Temporal patterns of solute loss following wildfires in Central Portugal

The present paper studies the hydrological implications of forest fire and the associated export of nutrients as solutes at the micro-plot, plot and catchment scales immediately after fire. The use of three different spatial scales provides improved insights into the mechanisms that drive hydrologic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of wildland fire 2005, Vol.14 (4), p.401-412
Hauptverfasser: Ferreira, A. J. D., Coelho, C. O. A., Boulet, A. K., Lopes, F. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present paper studies the hydrological implications of forest fire and the associated export of nutrients as solutes at the micro-plot, plot and catchment scales immediately after fire. The use of three different spatial scales provides improved insights into the mechanisms that drive hydrological and solute movement processes as they change with time following forest fire. Rainfall simulations were performed for 1 h, right after forest fires. Plots were monitored during and after rainfall events, and catchments were instrumented continuously with water level recorders. Samples were collected weekly to determine some of the main nutrients present over a period of 14 months. At all scales, the main hydrological processes were assessed and samples collected for chemical analysis. Measurements were made at burned Pinus pinaster locations in the central region of Portugal. These are ordinarily placed in poor, shallow Humic Cambisol soils located in steep slopes. The results show that there was a rapid and widespread export of nutrients during the first 4 months following the wildfire. The amount of nutrients lost decreased gradually over those 4 months in response to the exhaustion of the ash source. After this period, nutrient peak losses occurred only in response to extreme rainfall events.
ISSN:1049-8001
1448-5516
DOI:10.1071/WF05043