Corrosion studies in support of lead-bismuth cooled FBRs
The performance of structural materials in lead or lead-bismuth eutectic (LBE) systems is evaluated. The materials evaluated included several US steels (austenitic steel [316L], carbon steels [F-22, Fe-Si], ferritic/martensitic steels [HT-9 and 410]), and several experimental Fe-Si-Cr alloys that we...
Gespeichert in:
Veröffentlicht in: | Progress in nuclear energy (New series) 2005-01, Vol.47 (1), p.561-568 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The performance of structural materials in lead or lead-bismuth eutectic (LBE) systems is evaluated. The materials evaluated included several US steels (austenitic steel [316L], carbon steels [F-22, Fe-Si], ferritic/martensitic steels [HT-9 and 410]), and several experimental Fe-Si-Cr alloys that were expected to demonstrate corrosion resistance. The materials were exposed in either a dynamic corrosion cell for periods from 100 to 1,000 h at temperatures of 400, 500, 600 and 700°C, depending on material and exposure location. Weight change and optical SEM or X-ray analysis of the specimen were used to characterize oxide film thickness, corrosion depth, microstructure, and composition changes. The tests conducted with stainless steels (410, 316L and HT-9) produced mass transfer of elements (e.g., Ni and Cr) into the LBE, resulting in degradation of the material. With Fe-Si alloys a Si rich layer (as SiO
2) is formed on the surface during exposure to LBE from the selective dissolution of Fe. |
---|---|
ISSN: | 0149-1970 |
DOI: | 10.1016/j.pnucene.2005.05.075 |