Photoluminescence characterization of a high-efficiency Cu2ZnSnS4 device
We report on low-temperature (4 K) photoluminescence of an 8.3% efficient Cu2ZnSnS4 photovoltaic device. Measurements were recorded as a function of excitation intensity, and the evolution of the resulting spectra is discussed. The spectra indicate that the radiative recombination is characteristic...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2013-10, Vol.114 (15) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report on low-temperature (4 K) photoluminescence of an 8.3% efficient Cu2ZnSnS4 photovoltaic device. Measurements were recorded as a function of excitation intensity, and the evolution of the resulting spectra is discussed. The spectra indicate that the radiative recombination is characteristic of heavily compensated material with a high quasi donor-acceptor pair density, as determined by the relationship between peak height, peak position, and excitation intensity, as well as the carrier lifetimes at different wavelengths. The blue-shift of the defect-derived peak position is used to estimate the quasi donor-acceptor pair spacing and density. The data indicate an average pair spacing of roughly 3.3 nm, yielding an overall total radiative-defect density of ∼1.3 × 1019 cm−3. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4825317 |