Forward current transport mechanisms in Ni/Au-AlGaN/GaN Schottky diodes

The forward current transport mechanisms in Ni/Au-AlGaN/GaN Schottky diodes are studied by temperature dependent current-voltage (T-I-V) measurements from 298 to 473 K. The zero-bias barrier height qϕBn and ideality factor values determined based on the conventional thermionic-emission (TE) model ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2013-10, Vol.114 (14)
Hauptverfasser: Yan, Dawei, Jiao, Jinping, Ren, Jian, Yang, Guofeng, Gu, Xiaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The forward current transport mechanisms in Ni/Au-AlGaN/GaN Schottky diodes are studied by temperature dependent current-voltage (T-I-V) measurements from 298 to 473 K. The zero-bias barrier height qϕBn and ideality factor values determined based on the conventional thermionic-emission (TE) model are strong functions of temperature, which cannot be explained by the standard TE theory. Various transport models are considered to analyze the experimental I-V data. The fitting results indicate that the increased current at low bias is due to the trap-assisted tunneling with an effective trap density of about 8.8 × 106 cm−2, while the high-bias current flow is dominated by the TE transport mechanism, accompanied by a significant series resistance effect. By fitting the high-forward-bias I-V characteristics, the effective qϕBn values with a small negative temperature coefficient are obtained. The temperature dependence of the saturation tunneling current and qϕBn is finally explained by considering the thermally induced band gap shrinkage effect.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4824296