Interfacial modification of single-walled carbon nanotubes for high-loading-reinforced polypropylene composites
ABSTRACT In this article, we present a strategy for fabricating polypropylene (PP)/polypropylene‐regrafted single‐walled carbon nanotube (PP‐re‐g‐SWNT) composites with a high loading of single‐walled carbon nanotubes (SWNTs; 20 wt %). The PP‐re‐g‐SWNTs were characterized by X‐ray photoelectron, Four...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2014-02, Vol.131 (3), p.np-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
In this article, we present a strategy for fabricating polypropylene (PP)/polypropylene‐regrafted single‐walled carbon nanotube (PP‐re‐g‐SWNT) composites with a high loading of single‐walled carbon nanotubes (SWNTs; 20 wt %). The PP‐re‐g‐SWNTs were characterized by X‐ray photoelectron, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis (TGA). The PP‐re‐g‐SWNTs showed excellent interfacial adhesion and dispersion. Furthermore, PP molecules, about 72 wt % by mass, were homogeneously bonded onto the surface of the SWNTs according to TGA. In this hybrid nanocomposite system, the PP‐re‐g‐SWNTs were covalently integrated into the PP matrix and became part of the conjugated network structure (as evidenced by differential scanning calorimetry and dynamic mechanical analysis) rather than just a separate component. Accordingly, the PP/PP‐re‐g‐SWNT composites presented obvious improvements in mechanical properties and conductivity (from 10−10 to 10−2). Most importantly, the tensile and flexural strength of the PP/PP‐re‐g‐SWNT composites did not exhibit an obvious downturn with the addition of 20 wt % SWNTs; this was contrary to documented results. We believe that these new observations were due to the novel structure of the PP‐re‐g‐SWNTs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39817. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.39817 |