High refractive index thermally stable phenoxyphenyl and phenylthiophenyl silicones for light-emitting diode applications

ABSTRACT Creating high refractive index (RI) thermally stable polymers for encapsulating high‐brightness light‐emitting diodes (LEDs) remains a challenge and is an opportunity for improving LED efficiencies. The best previously reported RI for a 200°C heat stable encapsulant for LEDs is 1.56. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2014-02, Vol.131 (3), p.np-n/a
Hauptverfasser: Mosley, David W., Khanarian, Garo, Conner, David M., Thorsen, David L., Zhang, Tianlan, Wills, Marty
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Creating high refractive index (RI) thermally stable polymers for encapsulating high‐brightness light‐emitting diodes (LEDs) remains a challenge and is an opportunity for improving LED efficiencies. The best previously reported RI for a 200°C heat stable encapsulant for LEDs is 1.56. Here, we report the use of novel phenoxyphenyl and phenylthiophenyl silicone monomers to give fully formulated encapsulants with RIs above 1.60. These liquid dispensed encapsulants are highly heat stable, showing little change in optical properties after heat aging at 200°C in air for seven weeks, and were also little changed after cycling between −10°C to 85°C over 6 months. Phenoxyphenyl(phenyl) dimethoxysilane and phenylthiophenyl(phenyl) dimethoxysilane monomers were prepared via Grignard reactions. The resulting monomers were copolymerized with commercial silicone monomers and incorporated into hydrosilation‐based thermosets designed for use as LED encapsulants. RIs for the cured polymers were 1.60 at 633 nm (1.62 at 450 nm) for the phenoxyphenyl ether system and 1.62 at 633 nm (1.65 at 450 nm) for the phenylthiophenyl ether system. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39824.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.39824