Stereoselective formation of benzo(c)phenanthrene (+)-(3S,4R) and (+)-(5S,6R)-oxides by cytochrome P450c in a highly purified and reconstituted system

The principal oxidative metabolites formed from benzo(c)phenanthrene (B(c)Ph) by the cytochromes P450 in liver microsomes from control and treated rats are the 3,4- and 5,6-arene oxides. A procedure is described which allows determination of the enantiomer composition and absolute configuration of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 1987-05, Vol.145 (1), p.160-167
Hauptverfasser: van Bladeren, P.J., Balani, S.K., Sayer, J.M., Thakker, D.R., Boyd, D.R., Ryah, D.E., Thomas, P.E., Levin, W., Jerina, D.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The principal oxidative metabolites formed from benzo(c)phenanthrene (B(c)Ph) by the cytochromes P450 in liver microsomes from control and treated rats are the 3,4- and 5,6-arene oxides. A procedure is described which allows determination of the enantiomer composition and absolute configuration of these arene oxides based on HPLC separation of isomeric thiolate adducts formed with N-acetyl-L-cysteine in base. Incubation of [ 3H]-B(c)Ph with highly purified cytochrome P450c in a reconstituted monooxygenase system followed by trapping of the metabolically formed arene oxides as above indicated that the 3,4-oxide was predominantly the (+)-(3S,4R)-enantiomer (90%) and that the 5,6-oxide consisted mainly of the (+)-(5S,6R)-enantiomer (76%). The results are discussed in terms of their implications about the catalytic binding site of cytochrome P450c.
ISSN:0006-291X
1090-2104
DOI:10.1016/0006-291X(87)91301-5