Tebuconazole dissipation and metabolism in Tifton loamy sand during laboratory incubation
The fungicide tebuconazole is widely used to control soil-borne and foliar diseases in peanuts and other crops. No published data are currently available on the extent and rate at which this compound degrades in soil. Unpublished data summarized in registration documents suggest that the compound is...
Gespeichert in:
Veröffentlicht in: | Pest management science 2004-07, Vol.60 (7), p.703-709 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fungicide tebuconazole is widely used to control soil-borne and foliar diseases in peanuts and other crops. No published data are currently available on the extent and rate at which this compound degrades in soil. Unpublished data summarized in registration documents suggest that the compound is persistent, with 300-600 days half-life. We conducted a 63-day laboratory incubation to evaluate tebuconazole's dissipation kinetics and impact on soil microbial activity in Tifton loamy sand. Tifton soils support extensive peanut production in the Atlantic Coastal Plain region of Georgia and Alabama. Products containing tebuconazole are applied to an estimated 50% of the peanut acreage in the region. At the end of the incubation, 43 (±42)% of the parent compound was recovered in soil extracts. The first-order kinetic model, which gave a good fit to the dissipation data (r2 = 0.857), yielded a soil half-life (t1/2) of 49 days. This is 6-12 times more rapid than t1/2 values described in unpublished tebuconazole registration documents. Four degradates were identified. Tentative structural assignments indicated that degradates were derived from hydroxylation of the parent compound and/or chlorophenyl ring cleavage. Cleavage products showed a steady increase during the incubation, and on a molar basis were equal to 63% of the time zero tebuconazole concentration. No significant effect on soil microbial biomass was observed, indicating that when the compound is applied at normal agronomic rate it does not impact soil metabolic activity. Use of the soil-half life data derived in this study should improve the accuracy of tebuconazole fate assessments for Coastal Plain peanut production. The study also indicated that environmental assessment of selected degradates may be needed to fully evaluate risks of tebuconazole use. |
---|---|
ISSN: | 1526-498X 1526-4998 |
DOI: | 10.1002/ps.860 |