Ablation of Multiwavelet Re-entry Guided by Circuit-Density and Distribution: Maximizing the Probability of Circuit Annihilation

BACKGROUND—A key mechanism responsible for atrial fibrillation is multiwavelet re-entry (MWR). We have previously demonstrated improved efficiency of ablation when lesions were placed in regions of high circuit-density. In this study, we undertook a quantitative assessment of the relative effect of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation. Arrhythmia and electrophysiology 2013-12, Vol.6 (6), p.1229-1235
Hauptverfasser: Carrick, Richard T, Benson, Bryce, Habel, Nicole, Bates, Oliver R.J, Bates, Jason H.T, Spector, Peter S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND—A key mechanism responsible for atrial fibrillation is multiwavelet re-entry (MWR). We have previously demonstrated improved efficiency of ablation when lesions were placed in regions of high circuit-density. In this study, we undertook a quantitative assessment of the relative effect of ablation on the probability of MWR termination and the inducibility of MWR, as a function of lesion length and circuit-density overlap. METHODS AND RESULTS—We used a computational model to simulate MWR in tissues with (and without) localized regions of decreased action potential duration and increased intercellular resistance. We measured baseline circuit-density and distribution. We then assessed the effect of various ablation lesion sets on the inducibility and duration of MWR as a function of ablation lesion length and overlap with circuit-density. Higher circuit-density reproducibly localized to regions of shorter wavelength. Ablation lines with high circuit-density overlap showed maximum decreases in duration of MWR at lengths equal to the distance from the tissue boundary to the far side of the high circuit-density region (high-overlap, −43.5% [confidence interval, −22.0% to −65.1%] versus low-overlap, −4.4% [confidence interval, 7.3% to −16.0%]). Further ablation (beyond the length required to cross the high circuit-density region) provided minimal further reductions in duration and increased inducibility. CONCLUSIONS—Ablation at sites of high circuit-density most efficiently decreased re-entrant duration while minimally increasing inducibility. Ablation lines delivered at sites of low circuit-density minimally decreased duration yet increased inducibility of MWR.
ISSN:1941-3149
1941-3084
DOI:10.1161/CIRCEP.113.000759