A statistical analysis on the relationship between thunderstorms and the sporadic E Layer over Rome

Meteorological processes (cold fronts, mesoscale convective complexes, thunderstorms) in the troposphere can generate upward propagating waves in the neutral atmosphere affecting the behaviour of the ionosphere. One type of these waves are the internal atmospheric gravity waves (AGWs) which are ofte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomische Nachrichten 2013-11, Vol.334 (9), p.968-971
Hauptverfasser: Barta, V., Scotto, C., Pietrella, M., Sgrigna, V., Conti, L., Sátori, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Meteorological processes (cold fronts, mesoscale convective complexes, thunderstorms) in the troposphere can generate upward propagating waves in the neutral atmosphere affecting the behaviour of the ionosphere. One type of these waves are the internal atmospheric gravity waves (AGWs) which are often generated by thunderstorms. Davis & Johnson (2005) found in low pressure systems that a localized intensification of the sporadic E layer (Es) can be attributed to lightnings. To confirm this result, we have performed two different statistical analysis using the time series of the critical frequency (foEs), the virtual height of the sporadic E layer (h'Es), and meteorological observations (lightnings, Infrared maps) over the ionospheric station of Rome (41.9° N, 12.5° E). In the first statistical analysis, we separated the days of 2009 into two groups: stormy days and fair‐weather days, then we studied the occurrence and the properties of the Es separately for the two different groups. No significant differences have been found. In the second case, a superposed epoch analysis (SEA) was used to study the behaviour of the critical frequency and virtual height 100 hours before and after the lightnings. The SEA shows a statistically significant decrease in the critical frequency after the time of the lightnings, which indicates a sudden decrease in the electron density of the sporadic E layer associated with lightnings. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:0004-6337
1521-3994
DOI:10.1002/asna.201211972