2D DIGE based proteomics study of erythrocyte cytosol in sickle cell disease: Altered proteostasis and oxidative stress

Sickle cell disease (SCD) is a hemolytic disorder caused by a mutation in beta‐globin gene and affects millions of people worldwide. Though clinical manifestations of the disease are quite heterogeneous, many of them occur due to erythrocyte sickling at reduced oxygen concentration and vascular occl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteomics (Weinheim) 2013-11, Vol.13 (21), p.3233-3242
Hauptverfasser: Basu, Avik, Saha, Sutapa, Karmakar, Shilpita, Chakravarty, Sudipa, Banerjee, Debasis, Dash, Bisnu Prasad, Chakrabarti, Abhijit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sickle cell disease (SCD) is a hemolytic disorder caused by a mutation in beta‐globin gene and affects millions of people worldwide. Though clinical manifestations of the disease are quite heterogeneous, many of them occur due to erythrocyte sickling at reduced oxygen concentration and vascular occlusion mediated via blood cell adhesion to the vessel wall. We have followed proteomic approach to resolve the differentially regulated proteins of erythrocyte cytosol. The deregulated proteins mainly fall in the group of chaperone proteins such as heat shock protein 70, alpha hemoglobin stabilizing protein, and redox regulators such as aldehyde dehydrogenase and peroxiredoxin‐2 proteoforms. Proteasomal subunits are found to be upregulated and phospho‐catalase level also got altered. Severe oxidative stress inside erythrocyte is evident from the ROS analysis and OxyblotTM experiments. Peroxiredoxin‐2 shows significant dimerization in the SCD patients, a hallmark of oxidative stress inside erythrocytes. One interesting fact is that most of the differentially regulated proteins are also common for hemoglobinopathies such as Eβ thalassemia. These could provide important clues in understanding the pathophysiology of SCD and lead us to better patient management in the future.
ISSN:1615-9853
1615-9861
DOI:10.1002/pmic.201300177