Biocide and Copper Tolerance in Enterococci from Different Sources
Antimicrobial resistance in enterococci is a matter of concern. A collection of 272 strains (including 107 Enterococcus faecalis and 165 Enterococcus faecium strains) isolated from meat and dairy products, seafood, vegetable foods, wildflowers, animal feces (ewe, goat, horse, mule), and hospitals we...
Gespeichert in:
Veröffentlicht in: | Journal of food protection 2013-10, Vol.76 (10), p.1806-1809 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Antimicrobial resistance in enterococci is a matter of concern. A collection of 272 strains (including 107 Enterococcus faecalis and 165 Enterococcus faecium strains) isolated from meat and dairy products, seafood, vegetable foods, wildflowers, animal feces (ewe, goat, horse, mule), and hospitals were tested for sensitivity to biocides of different classes (quaternary ammonium compounds, a bisphenol, and a biguanide) and copper sulfate. Most isolates were inhibited at 25 mg of benzalkonium chloride or cetrimide per liter or at 2.5 mg of hexadecylpyridinium chloride per liter. Few isolates had MICs higher than 25 mg/liter for benzalkonium chloride (2.2%), cetrimide (0.74%), or hexadecylpyridinium chloride (0.37%), although they were all inhibited at 250 mg/liter. The population response to triclosan was very homogeneous, and most isolates (98.16%) were inhibited at 250 mg of triclosan per liter. Chlorhexidine showed the greatest variability, with MICs in a range from 2.5 to 2,500 mg/liter. Remarkably, 74.57% of isolates from clinical samples required 2,500 mg of chlorhexidine per liter for inhibition, compared to much-lower concentrations required for most isolates from other sources. Enterococci were inhibited by copper sulfate in a concentration range from 4 to 16 mM, with no bimodal distribution. However, most isolates required 12 mM (41.91%) or 16 mM (47.43%) for inhibition. The highest percentages of isolates requiring 16 mM CuSO4 were from vegetable foods, seafood, and wildflowers. The results from the present study suggest intermediate levels of copper tolerance and a low incidence of biocide tolerance in the enterococci investigated, except for chlorhexidine in clinical isolates. |
---|---|
ISSN: | 0362-028X 1944-9097 |
DOI: | 10.4315/0362-028X.JFP-13-124 |