An Artificial Neural Network Model to Reduce False Alarms in Satellite Precipitation Products Using MODIS and CloudSat Observations

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the NASA Earth Observing System (EOS) Aqua and Terra platform with 36 spectral bands provides valuable information about cloud microphysical characteristics and therefore precipitation retrievals. Additionally, CloudSat, sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrometeorology 2013-12, Vol.14 (6), p.1872-1883
Hauptverfasser: Nasrollahi, Nasrin, Hsu, Kuolin, Sorooshian, Soroosh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the NASA Earth Observing System (EOS) Aqua and Terra platform with 36 spectral bands provides valuable information about cloud microphysical characteristics and therefore precipitation retrievals. Additionally, CloudSat, selected as a NASA Earth Sciences Systems Pathfinder satellite mission, is equipped with a 94-GHz radar that can detect the occurrence of surface rainfall. The CloudSat radar flies in formation with Aqua with only an average of 60 s delay. The availability of surface rain presence based on CloudSat together with the multispectral capabilities of MODIS makes it possible to create a training dataset to distinguish false rain areas based on their radiances in satellite precipitation products [e.g., Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)]. The brightness temperatures of six MODIS water vapor and infrared channels are used in this study along with surface rain information from CloudSat to train an artificial neural network model for no-rain recognition. The results suggest a significant improvement in detecting nonprecipitating regions and reducing false identification of precipitation. Also, the results of the case studies of precipitation events during the summer and winter of 2007 over the United States show an accuracy of 77% no-rain identification and 93% detection accuracy, respectively.
ISSN:1525-755X
1525-7541
DOI:10.1175/JHM-D-12-0172.1