Ridostin Induces Transcription of a Wide Spectrum of Interferon Genes in Human Cells
The effects of Ridostin on the transcription of IFN family genes in human fibroblasts and lymphocytes were studied by quantitative real-time PCR. The degree of gene induction by Ridostin was most pronounced in fibroblasts, and was significantly higher than the induction by Kagocel: transcription of...
Gespeichert in:
Veröffentlicht in: | Bulletin of experimental biology and medicine 2013-12, Vol.156 (2), p.213-216 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of Ridostin on the transcription of IFN family genes in human fibroblasts and lymphocytes were studied by quantitative real-time PCR. The degree of gene induction by Ridostin was most pronounced in fibroblasts, and was significantly higher than the induction by Kagocel: transcription of IFN-β, oligoadenylate synthetase, and double-stranded RNA-dependent protein kinase genes increased by about 2000, 100, and 20 times, respectively. In lymphocytes, Ridostin also activated a wide variety of IFN family genes, including genes of IFN-α, IFN-γ, and IFN-dependent enzymes, but this induction was less pronounced than in the fibroblasts. It was shown that gene response in lymphocyte from a child with cancer is reduced in comparison with that of adult healthy participant. Ridostin, and even more so Reaferon up-regulated activities of β-actin, glycerophosphate dehydrogenase, and β2- microglobulin genes, thus making impossible or limiting their use as constitutive stable reference genes (standards) in PCR-assays of IFN and their inductors. |
---|---|
ISSN: | 0007-4888 1573-8221 |
DOI: | 10.1007/s10517-013-2313-z |