Ridostin Induces Transcription of a Wide Spectrum of Interferon Genes in Human Cells

The effects of Ridostin on the transcription of IFN family genes in human fibroblasts and lymphocytes were studied by quantitative real-time PCR. The degree of gene induction by Ridostin was most pronounced in fibroblasts, and was significantly higher than the induction by Kagocel: transcription of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of experimental biology and medicine 2013-12, Vol.156 (2), p.213-216
Hauptverfasser: Sokolova, T. M., Shuvalov, A. N., Telkov, M. V., Kolodyazhnaya, L. V., Ershov, F. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of Ridostin on the transcription of IFN family genes in human fibroblasts and lymphocytes were studied by quantitative real-time PCR. The degree of gene induction by Ridostin was most pronounced in fibroblasts, and was significantly higher than the induction by Kagocel: transcription of IFN-β, oligoadenylate synthetase, and double-stranded RNA-dependent protein kinase genes increased by about 2000, 100, and 20 times, respectively. In lymphocytes, Ridostin also activated a wide variety of IFN family genes, including genes of IFN-α, IFN-γ, and IFN-dependent enzymes, but this induction was less pronounced than in the fibroblasts. It was shown that gene response in lymphocyte from a child with cancer is reduced in comparison with that of adult healthy participant. Ridostin, and even more so Reaferon up-regulated activities of β-actin, glycerophosphate dehydrogenase, and β2- microglobulin genes, thus making impossible or limiting their use as constitutive stable reference genes (standards) in PCR-assays of IFN and their inductors.
ISSN:0007-4888
1573-8221
DOI:10.1007/s10517-013-2313-z