Energy barriers and driving forces in tRNA translocation through the ribosome

Using 13 intermediate-translocation-state models derived from X-ray and cryo-EM structures of Escherichia coli ribosomes to guide large-scale molecular dynamics simulations, a new study now models the path taken by tRNAs during spontaneous translocation to uncover the mechanisms that facilitate tRNA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2013-12, Vol.20 (12), p.1390-1396
Hauptverfasser: Bock, Lars V, Blau, Christian, Schröder, Gunnar F, Davydov, Iakov I, Fischer, Niels, Stark, Holger, Rodnina, Marina V, Vaiana, Andrea C, Grubmüller, Helmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1396
container_issue 12
container_start_page 1390
container_title Nature structural & molecular biology
container_volume 20
creator Bock, Lars V
Blau, Christian
Schröder, Gunnar F
Davydov, Iakov I
Fischer, Niels
Stark, Holger
Rodnina, Marina V
Vaiana, Andrea C
Grubmüller, Helmut
description Using 13 intermediate-translocation-state models derived from X-ray and cryo-EM structures of Escherichia coli ribosomes to guide large-scale molecular dynamics simulations, a new study now models the path taken by tRNAs during spontaneous translocation to uncover the mechanisms that facilitate tRNA movement through the ribosome. During protein synthesis, tRNAs move from the ribosome's aminoacyl to peptidyl to exit sites. Here we investigate conformational motions during spontaneous translocation, using molecular dynamics simulations of 13 intermediate-translocation-state models obtained by combining Escherichia coli ribosome crystal structures with cryo-EM data. Resolving fast transitions between states, we find that tRNA motions govern the transition rates within the pre- and post-translocation states. Intersubunit rotations and L1-stalk motion exhibit fast intrinsic submicrosecond dynamics. The L1 stalk drives the tRNA from the peptidyl site and links intersubunit rotation to translocation. Displacement of tRNAs is controlled by 'sliding' and 'stepping' mechanisms involving conserved L16, L5 and L1 residues, thus ensuring binding to the ribosome despite large-scale tRNA movement. Our results complement structural data with a time axis, intrinsic transition rates and molecular forces, revealing correlated functional motions inaccessible by other means.
doi_str_mv 10.1038/nsmb.2690
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1465864595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A354934107</galeid><sourcerecordid>A354934107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-9f6dda035c556204dafda0644172b18a1ad3fd70135272a396b8583aa20b304b3</originalsourceid><addsrcrecordid>eNptkVlPxCAUhYnRuD_4B0wTX9RkRihL6eNkMi7JqInLM6GFVkwLCq1x_r00rqOGhwuX755wOADsIThGEPMTG9pinLIcroBNRAkd5Tmnq1_7HG-ArRAeIUwpzfA62EgJ4gwysgkuZ1b7epEU0nujfUikVYny5sXYOqmcL3VIjE26m6tJ0nlpQ-NK2RkXWw_e9fVDrDrxpnDBtXoHrFWyCXr3o26D-9PZ3fR8NL8-u5hO5qOScNKN8oopJSGmJaUshUTJKh4ZIShLC8QlkgpXKoMI0zRLJc5ZwSnHUqawwJAUeBscvus-effc69CJ1oRSN4202vVBIMIoZ4TmNKIHv9BH13sbXzdQJP4O4-SbqmWjhbGVi2bLQVRMMCU5JghmkRr_Q8WldGtKZ3VlYn9p4GhpIDKdfu1q2YcgLm5v_mVL70LwuhJP3rTSLwSCYohZDDGLIebI7n-Y6otWqy_yM9cIHL8DIV7ZWvsfrv-ovQFIF62i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464999684</pqid></control><display><type>article</type><title>Energy barriers and driving forces in tRNA translocation through the ribosome</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Bock, Lars V ; Blau, Christian ; Schröder, Gunnar F ; Davydov, Iakov I ; Fischer, Niels ; Stark, Holger ; Rodnina, Marina V ; Vaiana, Andrea C ; Grubmüller, Helmut</creator><creatorcontrib>Bock, Lars V ; Blau, Christian ; Schröder, Gunnar F ; Davydov, Iakov I ; Fischer, Niels ; Stark, Holger ; Rodnina, Marina V ; Vaiana, Andrea C ; Grubmüller, Helmut</creatorcontrib><description>Using 13 intermediate-translocation-state models derived from X-ray and cryo-EM structures of Escherichia coli ribosomes to guide large-scale molecular dynamics simulations, a new study now models the path taken by tRNAs during spontaneous translocation to uncover the mechanisms that facilitate tRNA movement through the ribosome. During protein synthesis, tRNAs move from the ribosome's aminoacyl to peptidyl to exit sites. Here we investigate conformational motions during spontaneous translocation, using molecular dynamics simulations of 13 intermediate-translocation-state models obtained by combining Escherichia coli ribosome crystal structures with cryo-EM data. Resolving fast transitions between states, we find that tRNA motions govern the transition rates within the pre- and post-translocation states. Intersubunit rotations and L1-stalk motion exhibit fast intrinsic submicrosecond dynamics. The L1 stalk drives the tRNA from the peptidyl site and links intersubunit rotation to translocation. Displacement of tRNAs is controlled by 'sliding' and 'stepping' mechanisms involving conserved L16, L5 and L1 residues, thus ensuring binding to the ribosome despite large-scale tRNA movement. Our results complement structural data with a time axis, intrinsic transition rates and molecular forces, revealing correlated functional motions inaccessible by other means.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.2690</identifier><identifier>PMID: 24186064</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/574/1789 ; 631/535/1258/1259 ; 631/535/1267 ; 631/57/2272 ; Biochemistry ; Biological Microscopy ; Biological Transport ; Cryoelectron Microscopy ; Crystal structure ; Crystallography, X-Ray ; E coli ; Escherichia coli - genetics ; Identification and classification ; Kinetics ; Life Sciences ; Membrane Biology ; Nucleic Acid Conformation ; Protein Biosynthesis ; Protein Structure ; Protein synthesis ; Ribonucleic acid ; Ribosomes - metabolism ; Ribosomes - physiology ; RNA ; RNA, Transfer - chemistry ; RNA, Transfer - metabolism ; RNA, Transfer - physiology ; Transfer RNA ; Translocation ; Translocation (Genetics)</subject><ispartof>Nature structural &amp; molecular biology, 2013-12, Vol.20 (12), p.1390-1396</ispartof><rights>Springer Nature America, Inc. 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-9f6dda035c556204dafda0644172b18a1ad3fd70135272a396b8583aa20b304b3</citedby><cites>FETCH-LOGICAL-c484t-9f6dda035c556204dafda0644172b18a1ad3fd70135272a396b8583aa20b304b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24186064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bock, Lars V</creatorcontrib><creatorcontrib>Blau, Christian</creatorcontrib><creatorcontrib>Schröder, Gunnar F</creatorcontrib><creatorcontrib>Davydov, Iakov I</creatorcontrib><creatorcontrib>Fischer, Niels</creatorcontrib><creatorcontrib>Stark, Holger</creatorcontrib><creatorcontrib>Rodnina, Marina V</creatorcontrib><creatorcontrib>Vaiana, Andrea C</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><title>Energy barriers and driving forces in tRNA translocation through the ribosome</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Using 13 intermediate-translocation-state models derived from X-ray and cryo-EM structures of Escherichia coli ribosomes to guide large-scale molecular dynamics simulations, a new study now models the path taken by tRNAs during spontaneous translocation to uncover the mechanisms that facilitate tRNA movement through the ribosome. During protein synthesis, tRNAs move from the ribosome's aminoacyl to peptidyl to exit sites. Here we investigate conformational motions during spontaneous translocation, using molecular dynamics simulations of 13 intermediate-translocation-state models obtained by combining Escherichia coli ribosome crystal structures with cryo-EM data. Resolving fast transitions between states, we find that tRNA motions govern the transition rates within the pre- and post-translocation states. Intersubunit rotations and L1-stalk motion exhibit fast intrinsic submicrosecond dynamics. The L1 stalk drives the tRNA from the peptidyl site and links intersubunit rotation to translocation. Displacement of tRNAs is controlled by 'sliding' and 'stepping' mechanisms involving conserved L16, L5 and L1 residues, thus ensuring binding to the ribosome despite large-scale tRNA movement. Our results complement structural data with a time axis, intrinsic transition rates and molecular forces, revealing correlated functional motions inaccessible by other means.</description><subject>631/337/574/1789</subject><subject>631/535/1258/1259</subject><subject>631/535/1267</subject><subject>631/57/2272</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biological Transport</subject><subject>Cryoelectron Microscopy</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>E coli</subject><subject>Escherichia coli - genetics</subject><subject>Identification and classification</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Biosynthesis</subject><subject>Protein Structure</subject><subject>Protein synthesis</subject><subject>Ribonucleic acid</subject><subject>Ribosomes - metabolism</subject><subject>Ribosomes - physiology</subject><subject>RNA</subject><subject>RNA, Transfer - chemistry</subject><subject>RNA, Transfer - metabolism</subject><subject>RNA, Transfer - physiology</subject><subject>Transfer RNA</subject><subject>Translocation</subject><subject>Translocation (Genetics)</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkVlPxCAUhYnRuD_4B0wTX9RkRihL6eNkMi7JqInLM6GFVkwLCq1x_r00rqOGhwuX755wOADsIThGEPMTG9pinLIcroBNRAkd5Tmnq1_7HG-ArRAeIUwpzfA62EgJ4gwysgkuZ1b7epEU0nujfUikVYny5sXYOqmcL3VIjE26m6tJ0nlpQ-NK2RkXWw_e9fVDrDrxpnDBtXoHrFWyCXr3o26D-9PZ3fR8NL8-u5hO5qOScNKN8oopJSGmJaUshUTJKh4ZIShLC8QlkgpXKoMI0zRLJc5ZwSnHUqawwJAUeBscvus-effc69CJ1oRSN4202vVBIMIoZ4TmNKIHv9BH13sbXzdQJP4O4-SbqmWjhbGVi2bLQVRMMCU5JghmkRr_Q8WldGtKZ3VlYn9p4GhpIDKdfu1q2YcgLm5v_mVL70LwuhJP3rTSLwSCYohZDDGLIebI7n-Y6otWqy_yM9cIHL8DIV7ZWvsfrv-ovQFIF62i</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Bock, Lars V</creator><creator>Blau, Christian</creator><creator>Schröder, Gunnar F</creator><creator>Davydov, Iakov I</creator><creator>Fischer, Niels</creator><creator>Stark, Holger</creator><creator>Rodnina, Marina V</creator><creator>Vaiana, Andrea C</creator><creator>Grubmüller, Helmut</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>Energy barriers and driving forces in tRNA translocation through the ribosome</title><author>Bock, Lars V ; Blau, Christian ; Schröder, Gunnar F ; Davydov, Iakov I ; Fischer, Niels ; Stark, Holger ; Rodnina, Marina V ; Vaiana, Andrea C ; Grubmüller, Helmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-9f6dda035c556204dafda0644172b18a1ad3fd70135272a396b8583aa20b304b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/337/574/1789</topic><topic>631/535/1258/1259</topic><topic>631/535/1267</topic><topic>631/57/2272</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biological Transport</topic><topic>Cryoelectron Microscopy</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>E coli</topic><topic>Escherichia coli - genetics</topic><topic>Identification and classification</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Biosynthesis</topic><topic>Protein Structure</topic><topic>Protein synthesis</topic><topic>Ribonucleic acid</topic><topic>Ribosomes - metabolism</topic><topic>Ribosomes - physiology</topic><topic>RNA</topic><topic>RNA, Transfer - chemistry</topic><topic>RNA, Transfer - metabolism</topic><topic>RNA, Transfer - physiology</topic><topic>Transfer RNA</topic><topic>Translocation</topic><topic>Translocation (Genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bock, Lars V</creatorcontrib><creatorcontrib>Blau, Christian</creatorcontrib><creatorcontrib>Schröder, Gunnar F</creatorcontrib><creatorcontrib>Davydov, Iakov I</creatorcontrib><creatorcontrib>Fischer, Niels</creatorcontrib><creatorcontrib>Stark, Holger</creatorcontrib><creatorcontrib>Rodnina, Marina V</creatorcontrib><creatorcontrib>Vaiana, Andrea C</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bock, Lars V</au><au>Blau, Christian</au><au>Schröder, Gunnar F</au><au>Davydov, Iakov I</au><au>Fischer, Niels</au><au>Stark, Holger</au><au>Rodnina, Marina V</au><au>Vaiana, Andrea C</au><au>Grubmüller, Helmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy barriers and driving forces in tRNA translocation through the ribosome</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>20</volume><issue>12</issue><spage>1390</spage><epage>1396</epage><pages>1390-1396</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Using 13 intermediate-translocation-state models derived from X-ray and cryo-EM structures of Escherichia coli ribosomes to guide large-scale molecular dynamics simulations, a new study now models the path taken by tRNAs during spontaneous translocation to uncover the mechanisms that facilitate tRNA movement through the ribosome. During protein synthesis, tRNAs move from the ribosome's aminoacyl to peptidyl to exit sites. Here we investigate conformational motions during spontaneous translocation, using molecular dynamics simulations of 13 intermediate-translocation-state models obtained by combining Escherichia coli ribosome crystal structures with cryo-EM data. Resolving fast transitions between states, we find that tRNA motions govern the transition rates within the pre- and post-translocation states. Intersubunit rotations and L1-stalk motion exhibit fast intrinsic submicrosecond dynamics. The L1 stalk drives the tRNA from the peptidyl site and links intersubunit rotation to translocation. Displacement of tRNAs is controlled by 'sliding' and 'stepping' mechanisms involving conserved L16, L5 and L1 residues, thus ensuring binding to the ribosome despite large-scale tRNA movement. Our results complement structural data with a time axis, intrinsic transition rates and molecular forces, revealing correlated functional motions inaccessible by other means.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>24186064</pmid><doi>10.1038/nsmb.2690</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2013-12, Vol.20 (12), p.1390-1396
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_miscellaneous_1465864595
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/337/574/1789
631/535/1258/1259
631/535/1267
631/57/2272
Biochemistry
Biological Microscopy
Biological Transport
Cryoelectron Microscopy
Crystal structure
Crystallography, X-Ray
E coli
Escherichia coli - genetics
Identification and classification
Kinetics
Life Sciences
Membrane Biology
Nucleic Acid Conformation
Protein Biosynthesis
Protein Structure
Protein synthesis
Ribonucleic acid
Ribosomes - metabolism
Ribosomes - physiology
RNA
RNA, Transfer - chemistry
RNA, Transfer - metabolism
RNA, Transfer - physiology
Transfer RNA
Translocation
Translocation (Genetics)
title Energy barriers and driving forces in tRNA translocation through the ribosome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20barriers%20and%20driving%20forces%20in%20tRNA%20translocation%20through%20the%20ribosome&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Bock,%20Lars%20V&rft.date=2013-12-01&rft.volume=20&rft.issue=12&rft.spage=1390&rft.epage=1396&rft.pages=1390-1396&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.2690&rft_dat=%3Cgale_proqu%3EA354934107%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464999684&rft_id=info:pmid/24186064&rft_galeid=A354934107&rfr_iscdi=true