ClC-7 expression levels critically regulate bone turnover, but not gastric acid secretion

Abstract Mutations in the 2Cl− /1H+ -exchanger ClC-7 impair osteoclast function and cause different types of osteoclast-rich osteopetrosis. However, it is unknown to what extent ClC-7 function has to be reduced to become rate-limiting for bone resorption. In osteoclasts from osteopetrosis patients e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bone (New York, N.Y.) N.Y.), 2014-01, Vol.58, p.92-102
Hauptverfasser: Supanchart, C, Wartosch, L, Schlack, C, Kühnisch, J, Felsenberg, D, Fuhrmann, J.C, de Vernejoul, M.-C, Jentsch, T.J, Kornak, U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Mutations in the 2Cl− /1H+ -exchanger ClC-7 impair osteoclast function and cause different types of osteoclast-rich osteopetrosis. However, it is unknown to what extent ClC-7 function has to be reduced to become rate-limiting for bone resorption. In osteoclasts from osteopetrosis patients expression of the mutated ClC-7 protein did not correlate with disease severity and resorption impairment. Therefore, a series of transgenic mice expressing ClC-7 in osteoclasts at different levels was generated. Crossing of these mice with Clcn7−/− mutants rescued the osteopetrotic phenotype to variable degrees. One resulting double transgenic line mimicked human autosomal dominant osteopetrosis. The trabecular bone of these mice showed a reduction of osteoblast numbers, osteoid, and osteoblast marker gene expression indicative of reduced osteoblast function. In osteoclasts from these mutants ClC-7 expression levels were 20 to 30% of wildtype levels. These reduced levels not only impaired resorptive activity, but also increased numbers, size and nucleus numbers of osteoclasts differentiated in vitro . Although ClC-7 was expressed in the stomach and PTH levels were high in Clcn7−/− mutants loss of ClC-7 did not entail a relevant elevation of gastric pH. In conclusion, we show that in our model a reduction of ClC-7 function by approximately 70% is sufficient to increase bone mass, but does not necessarily enhance bone formation. ClC-7 does not appear to be crucially involved in gastric acid secretion, which explains the absence of an osteopetrorickets phenotype in CLCN7 -related osteopetrosis.
ISSN:8756-3282
1873-2763
DOI:10.1016/j.bone.2013.09.022