High Glucose Concentration Does Not Modulate the Formation of Arterial Medial Calcification in Experimental Uremic Rats

High phosphate-induced phenotypic switching of smooth muscle cells (SMCs) into osteogenic cells is critical for the formation of arterial medial calcification in chronic kidney disease. Because vascular calcification is also prevalent in type 2 diabetes, we examined whether glucose concentration aff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vascular research 2013-01, Vol.50 (6), p.512-520
Hauptverfasser: Yoshida, Tadashi, Yamashita, Maho, Horimai, Chihiro, Hayashi, Matsuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High phosphate-induced phenotypic switching of smooth muscle cells (SMCs) into osteogenic cells is critical for the formation of arterial medial calcification in chronic kidney disease. Because vascular calcification is also prevalent in type 2 diabetes, we examined whether glucose concentration affects high phosphate-induced SMC phenotypic switching and calcification. First, the formation of arterial medial calcification was compared among 4 groups: adenine-fed uremic rats, streptozotocin-injected hyperglycemic rats, adenine-fed and streptozotocin-injected uremic/hyperglycemic rats, and control rats. Calcification was obvious in uremic and uremic/hyperglycemic rats, whereas it was undetectable in the others. Aortic calcium contents were significantly elevated in uremic and uremic/hyperglycemic rats, but they were not different between the two groups. Moreover, hyperglycemia had no effects on the reduced expression of SMC differentiation markers including smooth muscle α-actin and SM22α and on the increased expression of osteogenic markers, such as Runx2, in uremic rats. Second, cultured SMCs were incubated in the medium with various concentrations of phosphate (0.9-4.5 mmol/l) and glucose (5-50 mmol/l), and calcium deposition was measured. Although high phosphate dose-dependently increased calcium contents, they were unaffected by glucose concentration. Results suggest that glucose concentration does not directly modulate high phosphate-induced SMC phenotypic switching and arterial medial calcification.
ISSN:1018-1172
1423-0135
DOI:10.1159/000355263