Parametric CFD studies on hydrocyclone

This research article encompasses development of hydrocyclone simulation methodology through validation with suitably designed experiments at a range of process conditions and further understanding on the parametric design and operating conditions. The salient features of the methodology included Eu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2012-11, Vol.230, p.36-47
Hauptverfasser: Murthy, Y. Rama, Bhaskar, K. Udaya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue
container_start_page 36
container_title Powder technology
container_volume 230
creator Murthy, Y. Rama
Bhaskar, K. Udaya
description This research article encompasses development of hydrocyclone simulation methodology through validation with suitably designed experiments at a range of process conditions and further understanding on the parametric design and operating conditions. The salient features of the methodology included Eulerian primary phase flow field generation through steady state simulation using RSM turbulence modeling, and evaluation of particle distribution behavior through discrete phase modeling using particle injection technique. The results are validated with water throughput, split and cyclone cut size while classifying flyash. The results have indicated a reasonable matching between the simulated and the experimental values. The studies revealed that the cyclone cut size increases with an increase in vortex finder diameter, a decrease in the spigot diameter, decrease in the inlet velocity of the fluid, and decrease in the viscosity of the fluid. Higher values of static pressures were observed at the cyclone walls and at radial distances away from the cyclone axis whereas lower values were observed near the spigot outlet. The intensity of pressure increases along radial direction and maximum near the feed inlet. A negative pressure zone appears in the forced vortex region (central region) due to high swirling velocity. [Display omitted] ► A CFD simulation methodology using RSM Model was established for hydrocyclone. ► Extensive validation between simulated and experimental results using fly ash. ► Established effect of design and operating parameters on hydrocyclone performance.
doi_str_mv 10.1016/j.powtec.2012.06.048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464585410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591012004573</els_id><sourcerecordid>1464585410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-335f5fff0f6b39f8399c1ab332d5afce43b7bfdb9f31707005d258e1737efe753</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKf_QHAvii-tN03TtC-CTKfCQEEHvoU0vdGMrplJp-zfm1Hx0af78p1zDx8hpxRSCrS4WqZr992jTjOgWQpFCnm5R0a0FCxhWfm2T0YALEt4ReGQHIWwBICCURiRi2fl1Qp7b_VkOrudhH7TWAwT100-to13eqtb1-ExOTCqDXjye8dkMbt7nT4k86f7x-nNPNGsYn3CGDfcGAOmqFllSlZVmqqasazhymjMWS1q09SVYVSAAOBNxkukggk0KDgbk8uhd-3d5wZDL1c2aGxb1aHbBEnzIuclzylENB9Q7V0IHo1ce7tSfispyJ0WuZSDFrnTIqGQUUuMnf9-UEGr1njVaRv-slkRN1dFHrmzgTPKSfXuI7N4iUUcYrXIOY3E9UBgFPJl0cugLXYaG-tR97Jx9v8pP_X2gmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464585410</pqid></control><display><type>article</type><title>Parametric CFD studies on hydrocyclone</title><source>Elsevier ScienceDirect Journals</source><creator>Murthy, Y. Rama ; Bhaskar, K. Udaya</creator><creatorcontrib>Murthy, Y. Rama ; Bhaskar, K. Udaya</creatorcontrib><description>This research article encompasses development of hydrocyclone simulation methodology through validation with suitably designed experiments at a range of process conditions and further understanding on the parametric design and operating conditions. The salient features of the methodology included Eulerian primary phase flow field generation through steady state simulation using RSM turbulence modeling, and evaluation of particle distribution behavior through discrete phase modeling using particle injection technique. The results are validated with water throughput, split and cyclone cut size while classifying flyash. The results have indicated a reasonable matching between the simulated and the experimental values. The studies revealed that the cyclone cut size increases with an increase in vortex finder diameter, a decrease in the spigot diameter, decrease in the inlet velocity of the fluid, and decrease in the viscosity of the fluid. Higher values of static pressures were observed at the cyclone walls and at radial distances away from the cyclone axis whereas lower values were observed near the spigot outlet. The intensity of pressure increases along radial direction and maximum near the feed inlet. A negative pressure zone appears in the forced vortex region (central region) due to high swirling velocity. [Display omitted] ► A CFD simulation methodology using RSM Model was established for hydrocyclone. ► Extensive validation between simulated and experimental results using fly ash. ► Established effect of design and operating parameters on hydrocyclone performance.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2012.06.048</identifier><identifier>CODEN: POTEBX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Centrifugation, cyclones ; CFD simulation ; Chemical engineering ; Computational fluid dynamics ; Computer simulation ; Cyclones ; Exact sciences and technology ; Fluid flow ; Fluids ; fly ash ; Flyash processing ; Hydrocyclone ; Hydrodynamics of contact apparatus ; Liquid-liquid and fluid-solid mechanical separations ; Methodology ; Miscellaneous ; Solid-solid systems ; Turbulence ; Turbulent flow ; viscosity</subject><ispartof>Powder technology, 2012-11, Vol.230, p.36-47</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-335f5fff0f6b39f8399c1ab332d5afce43b7bfdb9f31707005d258e1737efe753</citedby><cites>FETCH-LOGICAL-c393t-335f5fff0f6b39f8399c1ab332d5afce43b7bfdb9f31707005d258e1737efe753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.powtec.2012.06.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26399964$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Murthy, Y. Rama</creatorcontrib><creatorcontrib>Bhaskar, K. Udaya</creatorcontrib><title>Parametric CFD studies on hydrocyclone</title><title>Powder technology</title><description>This research article encompasses development of hydrocyclone simulation methodology through validation with suitably designed experiments at a range of process conditions and further understanding on the parametric design and operating conditions. The salient features of the methodology included Eulerian primary phase flow field generation through steady state simulation using RSM turbulence modeling, and evaluation of particle distribution behavior through discrete phase modeling using particle injection technique. The results are validated with water throughput, split and cyclone cut size while classifying flyash. The results have indicated a reasonable matching between the simulated and the experimental values. The studies revealed that the cyclone cut size increases with an increase in vortex finder diameter, a decrease in the spigot diameter, decrease in the inlet velocity of the fluid, and decrease in the viscosity of the fluid. Higher values of static pressures were observed at the cyclone walls and at radial distances away from the cyclone axis whereas lower values were observed near the spigot outlet. The intensity of pressure increases along radial direction and maximum near the feed inlet. A negative pressure zone appears in the forced vortex region (central region) due to high swirling velocity. [Display omitted] ► A CFD simulation methodology using RSM Model was established for hydrocyclone. ► Extensive validation between simulated and experimental results using fly ash. ► Established effect of design and operating parameters on hydrocyclone performance.</description><subject>Applied sciences</subject><subject>Centrifugation, cyclones</subject><subject>CFD simulation</subject><subject>Chemical engineering</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cyclones</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>fly ash</subject><subject>Flyash processing</subject><subject>Hydrocyclone</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Liquid-liquid and fluid-solid mechanical separations</subject><subject>Methodology</subject><subject>Miscellaneous</subject><subject>Solid-solid systems</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>viscosity</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKf_QHAvii-tN03TtC-CTKfCQEEHvoU0vdGMrplJp-zfm1Hx0af78p1zDx8hpxRSCrS4WqZr992jTjOgWQpFCnm5R0a0FCxhWfm2T0YALEt4ReGQHIWwBICCURiRi2fl1Qp7b_VkOrudhH7TWAwT100-to13eqtb1-ExOTCqDXjye8dkMbt7nT4k86f7x-nNPNGsYn3CGDfcGAOmqFllSlZVmqqasazhymjMWS1q09SVYVSAAOBNxkukggk0KDgbk8uhd-3d5wZDL1c2aGxb1aHbBEnzIuclzylENB9Q7V0IHo1ce7tSfispyJ0WuZSDFrnTIqGQUUuMnf9-UEGr1njVaRv-slkRN1dFHrmzgTPKSfXuI7N4iUUcYrXIOY3E9UBgFPJl0cugLXYaG-tR97Jx9v8pP_X2gmM</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Murthy, Y. Rama</creator><creator>Bhaskar, K. Udaya</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121101</creationdate><title>Parametric CFD studies on hydrocyclone</title><author>Murthy, Y. Rama ; Bhaskar, K. Udaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-335f5fff0f6b39f8399c1ab332d5afce43b7bfdb9f31707005d258e1737efe753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Centrifugation, cyclones</topic><topic>CFD simulation</topic><topic>Chemical engineering</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cyclones</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>fly ash</topic><topic>Flyash processing</topic><topic>Hydrocyclone</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Liquid-liquid and fluid-solid mechanical separations</topic><topic>Methodology</topic><topic>Miscellaneous</topic><topic>Solid-solid systems</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murthy, Y. Rama</creatorcontrib><creatorcontrib>Bhaskar, K. Udaya</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murthy, Y. Rama</au><au>Bhaskar, K. Udaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric CFD studies on hydrocyclone</atitle><jtitle>Powder technology</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>230</volume><spage>36</spage><epage>47</epage><pages>36-47</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><coden>POTEBX</coden><abstract>This research article encompasses development of hydrocyclone simulation methodology through validation with suitably designed experiments at a range of process conditions and further understanding on the parametric design and operating conditions. The salient features of the methodology included Eulerian primary phase flow field generation through steady state simulation using RSM turbulence modeling, and evaluation of particle distribution behavior through discrete phase modeling using particle injection technique. The results are validated with water throughput, split and cyclone cut size while classifying flyash. The results have indicated a reasonable matching between the simulated and the experimental values. The studies revealed that the cyclone cut size increases with an increase in vortex finder diameter, a decrease in the spigot diameter, decrease in the inlet velocity of the fluid, and decrease in the viscosity of the fluid. Higher values of static pressures were observed at the cyclone walls and at radial distances away from the cyclone axis whereas lower values were observed near the spigot outlet. The intensity of pressure increases along radial direction and maximum near the feed inlet. A negative pressure zone appears in the forced vortex region (central region) due to high swirling velocity. [Display omitted] ► A CFD simulation methodology using RSM Model was established for hydrocyclone. ► Extensive validation between simulated and experimental results using fly ash. ► Established effect of design and operating parameters on hydrocyclone performance.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2012.06.048</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2012-11, Vol.230, p.36-47
issn 0032-5910
1873-328X
language eng
recordid cdi_proquest_miscellaneous_1464585410
source Elsevier ScienceDirect Journals
subjects Applied sciences
Centrifugation, cyclones
CFD simulation
Chemical engineering
Computational fluid dynamics
Computer simulation
Cyclones
Exact sciences and technology
Fluid flow
Fluids
fly ash
Flyash processing
Hydrocyclone
Hydrodynamics of contact apparatus
Liquid-liquid and fluid-solid mechanical separations
Methodology
Miscellaneous
Solid-solid systems
Turbulence
Turbulent flow
viscosity
title Parametric CFD studies on hydrocyclone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20CFD%20studies%20on%20hydrocyclone&rft.jtitle=Powder%20technology&rft.au=Murthy,%20Y.%20Rama&rft.date=2012-11-01&rft.volume=230&rft.spage=36&rft.epage=47&rft.pages=36-47&rft.issn=0032-5910&rft.eissn=1873-328X&rft.coden=POTEBX&rft_id=info:doi/10.1016/j.powtec.2012.06.048&rft_dat=%3Cproquest_cross%3E1464585410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464585410&rft_id=info:pmid/&rft_els_id=S0032591012004573&rfr_iscdi=true