Parametric CFD studies on hydrocyclone
This research article encompasses development of hydrocyclone simulation methodology through validation with suitably designed experiments at a range of process conditions and further understanding on the parametric design and operating conditions. The salient features of the methodology included Eu...
Gespeichert in:
Veröffentlicht in: | Powder technology 2012-11, Vol.230, p.36-47 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research article encompasses development of hydrocyclone simulation methodology through validation with suitably designed experiments at a range of process conditions and further understanding on the parametric design and operating conditions. The salient features of the methodology included Eulerian primary phase flow field generation through steady state simulation using RSM turbulence modeling, and evaluation of particle distribution behavior through discrete phase modeling using particle injection technique. The results are validated with water throughput, split and cyclone cut size while classifying flyash. The results have indicated a reasonable matching between the simulated and the experimental values. The studies revealed that the cyclone cut size increases with an increase in vortex finder diameter, a decrease in the spigot diameter, decrease in the inlet velocity of the fluid, and decrease in the viscosity of the fluid.
Higher values of static pressures were observed at the cyclone walls and at radial distances away from the cyclone axis whereas lower values were observed near the spigot outlet. The intensity of pressure increases along radial direction and maximum near the feed inlet. A negative pressure zone appears in the forced vortex region (central region) due to high swirling velocity. [Display omitted]
► A CFD simulation methodology using RSM Model was established for hydrocyclone. ► Extensive validation between simulated and experimental results using fly ash. ► Established effect of design and operating parameters on hydrocyclone performance. |
---|---|
ISSN: | 0032-5910 1873-328X |
DOI: | 10.1016/j.powtec.2012.06.048 |