Layer-by-layer films for tunable and rewritable control of contact electrification

Charges generated by contact of solid surfaces (contact electrification) can be hazardous or useful depending on the circumstance. This paper describes a process to design a solid surface rationally to either induce or prevent charging during contact electrification; this process coats the surface w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2013-01, Vol.9 (43), p.10233-10238
Hauptverfasser: Soh, Siowling, Chen, Xin, Vella, Sarah J., Choi, Wonjae, Gong, Jinlong, Whitesides, George M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Charges generated by contact of solid surfaces (contact electrification) can be hazardous or useful depending on the circumstance. This paper describes a process to design a solid surface rationally to either induce or prevent charging during contact electrification; this process coats the surface with polyelectrolytes. It is observed experimentally that a surface coated with a layer of a polymer having multiple, covalently attached positive charges (a "polycation") develops a positive charge after contacting another surface; a surface coated with a layer of polymer having negative charges (a "polyanion") develops a negative charge. By coating the surface using layer-by-layer (LBL) deposition, the tendency of the surface to charge either positively or negatively can be switched: adding a layer of polyelectrolyte with charge opposite to the charge on the surface switches the polarity of the surface. Through microcontact printing ( mu CP), the surface can be stamped to create a mosaic pattern of polycation and polyanion - and importantly, the fraction of the surface area covered with polycation and polyanion can be tuned by using stamps of different patterns. Using poly(diallyldimethylammonium chloride) (PDDA) as the polycation and poly(sodium 4-styrenesulfonate) (PSS) as the polyanion, it is found that for a surface with >75% PSS, the surface charges negatively; with
ISSN:1744-683X
1744-6848
DOI:10.1039/c3sm51983j