Multi-task oriented design of an asymmetric 3T1R type 4-DOF parallel mechanism

In performing tasks requiring less than 6 degrees-of-freedom (DOF), lower mobility robots having a parallel structure are effective. This work investigates an asymmetric type 4 degrees-of-freedom parallel mechanism having Schönflies motions. This mechanism would be useful for multi-purpose tasks bec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2013-10, Vol.227 (10), p.2236-2255
Hauptverfasser: Yi, Byung-Ju, Kim, Sung Mok, Kwak, Hyun Koo, Kim, Wheekuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In performing tasks requiring less than 6 degrees-of-freedom (DOF), lower mobility robots having a parallel structure are effective. This work investigates an asymmetric type 4 degrees-of-freedom parallel mechanism having Schönflies motions. This mechanism would be useful for multi-purpose tasks because it incorporates a transmission linkage with appropriate output modules. The mobility analysis, kinematic modelling, and singularity analysis for the mechanism are performed. Optimal design parameters with respect to both the workspace size and kinematic isotropy are identified by employing composite global design index. In addition, to cope with the singularity problem, a new design involving redundant actuation is suggested. And dynamic simulations are conducted to reaffirm its high potential in real manufacturing applications.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406212473726