Resonant and nonresonant control over matter and light by intense terahertz transients
Electromagnetic radiation in the terahertz (THz) frequency range is a fascinating spectroscopic tool that provides resonant access to fundamental modes, including the motions of free electrons, the rotations of molecules, the vibrations of crystal lattices and the precessions of spins. Consequently,...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2013-09, Vol.7 (9), p.680-690 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electromagnetic radiation in the terahertz (THz) frequency range is a fascinating spectroscopic tool that provides resonant access to fundamental modes, including the motions of free electrons, the rotations of molecules, the vibrations of crystal lattices and the precessions of spins. Consequently, THz waves have been extensively used to probe such responses with high sensitivity. However, owing to recent developments in high-power sources, scientists have started to abandon the role of pure observers and are now exploiting intense THz radiation to engineer transient states of matter. This Review provides an overview and illustrative examples of how the electric and magnetic fields of intense THz transients can be used to control matter and light resonantly and nonresonantly.
This article provides an overview and illustrative examples of how the electric and magnetic fields of intense terahertz transients can be used to resonantly, and even nonresonantly, control matter and light. It discusses the fundamental interaction mechanisms of intense terahertz radiation with matter. |
---|---|
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/nphoton.2013.184 |