Dominating Sets and Domination Polynomials of Square of Paths
Let G = (V, E) be a simple graph. A set S i V is a dominating set of G, if every vertex in V-S is adjacent to at least one vertex in S. Let be the square of the Path and let denote the family of all dominating sets of with cardinality i. Let . In this paper, we obtain a recursive formula for . Using...
Gespeichert in:
Veröffentlicht in: | Open journal of discrete mathematics 2013, Vol.3 (1), p.60-69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G = (V, E) be a simple graph. A set S i V is a dominating set of G, if every vertex in V-S is adjacent to at least one vertex in S. Let be the square of the Path and let denote the family of all dominating sets of with cardinality i. Let . In this paper, we obtain a recursive formula for . Using this recursive formula, we construct the polynomial, , which we call domination polynomial of and obtain some properties of this polynomial. |
---|---|
ISSN: | 2161-7635 2161-7643 |
DOI: | 10.4236/ojdm.2013.31013 |