The effect of using an exopolysaccharide-producing culture on the physicochemical properties of low-fat and reduced-fat Kasar cheeses

A mixed starter culture containing exopolysaccharide (EPS)‐producing strains of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus was combined with Lactobacillus helveticus LH301 and used in the manufacture of low‐fat and reduced‐fat Kasar cheeses. For comparison, low‐fat (C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dairy technology 2013-11, Vol.66 (4), p.535-542
Hauptverfasser: Şanli, Tuba, Gursel, Asuman, Şanli, Ebru, Acar, Esra, Benli, Mehlika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mixed starter culture containing exopolysaccharide (EPS)‐producing strains of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus was combined with Lactobacillus helveticus LH301 and used in the manufacture of low‐fat and reduced‐fat Kasar cheeses. For comparison, low‐fat (C10) and reduced‐fat (C20) cheeses were made using EPS‐producing (EPS+) starter strain and EPS‐non‐producing (EPS−) starter strain. The physicochemical properties of the cheeses were assessed in terms of chemical composition, texture, microstructure and microbial content over 90 days. Cheeses made with EPS‐producing culture (EPS10 and EPS20) had lower protein contents than control cheeses with 10% and 20% fat in dry basis (C10 and C20). Scanning electron microscopy images showed that using EPS‐producing culture resulted in a less compact protein matrix and sponge‐like structure in the cheese samples. In general, cheeses made using EPS‐producing culture had lower total viable counts. This could be related to the reduced survivability of EPS‐producing cells in the cheese matrix during ripening due to autolysis ability.
ISSN:1364-727X
1471-0307
DOI:10.1111/1471-0307.12071