CABARET scheme with conservation-flux asynchronous time-stepping for nonlinear aeroacoustics problems
Explicit time stepping renders many high-resolution computational schemes to become less efficient when dealing with non-uniform grids typical of many aeroacoustic applications. Asynchronous time stepping, i.e., updating the solution in different cell sizes according to their local rates, is known t...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2013-11, Vol.253, p.157-165 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Explicit time stepping renders many high-resolution computational schemes to become less efficient when dealing with non-uniform grids typical of many aeroacoustic applications. Asynchronous time stepping, i.e., updating the solution in different cell sizes according to their local rates, is known to be a promising way to improve the efficiency of explicit time-stepping methods without compromise in accuracy. In the present paper, a new asynchronous time-stepping algorithm is developed for the Compact Accurately Boundary-Adjusting high-REsolution Technique (CABARET) Euler method. This allows to significantly speedup the original single-step CABARET method with non-uniform grids and improves its accuracy at the same time. Numerical examples are provided and issues associated with the method performance on various grid resolutions are discussed. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2013.07.008 |