The visual cortex in schizophrenia: alterations of gyrification rather than cortical thickness—a combined cortical shape analysis
In light of bottom-up models of disrupted cognition in schizophrenia, visual processing deficits became a key feature for the pathophysiology of schizophrenia. However, morphometric studies focusing on the visual cortex are limited. Thus, the present study sought to provide a combined cortical shape...
Gespeichert in:
Veröffentlicht in: | Brain Structure and Function 2013-01, Vol.218 (1), p.51-58 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In light of bottom-up models of disrupted cognition in schizophrenia, visual processing deficits became a key feature for the pathophysiology of schizophrenia. However, morphometric studies focusing on the visual cortex are limited. Thus, the present study sought to provide a combined cortical shape analysis (cortical thickness, folding) of visual areas, which were implicated to be involved in disturbed visual processing in schizophrenia. A group of 72 patients with schizophrenia according to DSM-IV and 72 age- and gender-matched healthy control subjects were included. All participants underwent high-resolution T1-weighted MRI scans on a 1.5-T scanner. Cortical thickness and mean curvature of the V1, V2 and V5/MT+ visual cortex were estimated using an automated computerized algorithm (Freesurfer Software). A GLM controlling for the effect of age was used to estimate differences of cortical shape parameters between the study groups. Significantly increased gyrification of the V1, V2 and the V5/MT+ visual area bilaterally was detected. Conversely, cortical thickness was reduced in patients with schizophrenia only for the V5/MT+ area. This study is the first providing direct in vivo evidence for a disturbed cortical shape of central visual areas in schizophrenia. The present findings of hypergyria are highly indicative for a disrupted corticogenesis of these visual key regions and might constitute a relevant anatomical basis for visual processing deficits in schizophrenia. |
---|---|
ISSN: | 1863-2653 1863-2661 0340-2061 |
DOI: | 10.1007/s00429-011-0374-1 |