Biodegradable poly(butylene-carbonate) porous membranes for guided bone regeneration: In vitro and in vivo studies
Poly(butylene-carbonate) is a potential alternative to poly(ε-caprolactone) for biomedical application. Although mechanical properties of porous poly(butylene-carbonate) membranes were inferior to poly(ε-caprolactone), its contact angles (47.41° ± 1.17°) were lower than poly(ε-caprolactone) (77.24°...
Gespeichert in:
Veröffentlicht in: | Journal of bioactive and compatible polymers 2013-11, Vol.28 (6), p.621-636 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poly(butylene-carbonate) is a potential alternative to poly(ε-caprolactone) for biomedical application. Although mechanical properties of porous poly(butylene-carbonate) membranes were inferior to poly(ε-caprolactone), its contact angles (47.41° ± 1.17°) were lower than poly(ε-caprolactone) (77.24° ± 0.54°) (p < 0.001). It degraded faster than poly(ε-caprolactone) during a 10-week in vitro experiment (p < 0.01). Moreover, it had excellent bioactivity during simulated body fluid immersion. Cell spreading on poly(butylene-carbonate) was better than that on poly(ε-caprolactone). Cell behavior tests including cytotoxicity, proliferation, and differentiation were performed. The poly(butylene-carbonate) is more compatible with cells and promotes cell differentiation. In vivo, the defects covered by poly(butylene-carbonate) and poly(ε-caprolactone) membranes had a similar degree of regeneration at 4 weeks. It was concluded that poly(butylene-carbonate) could potentially be used to guide bone regeneration, and it is a potential new biodegradable polymer. |
---|---|
ISSN: | 0883-9115 1530-8030 |
DOI: | 10.1177/0883911513509471 |