TGF-β1 Attenuates Spinal Neuroinflammation and the Excitatory Amino Acid System in Rats With Neuropathic Pain

Abstract Previous studies have reported that the intrathecal (i.t.) administration of transforming growth factor β1 (TGF-β1) prevents and reverses neuropathic pain. However, only limited information is available regarding the possible role and effects of spinal TGF-β1 in neuropathic pain. We aimed t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of pain 2013-12, Vol.14 (12), p.1671-1685
Hauptverfasser: Chen, Nan-Fu, Huang, Shi-Ying, Chen, Wu-Fu, Chen, Chun-Hong, Lu, Ching-Hsiang, Chen, Chun-Lin, Yang, San-Nan, Wang, Hui-Min, Wen, Zhi-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Previous studies have reported that the intrathecal (i.t.) administration of transforming growth factor β1 (TGF-β1) prevents and reverses neuropathic pain. However, only limited information is available regarding the possible role and effects of spinal TGF-β1 in neuropathic pain. We aimed to investigate the antinociceptive effects of exogenous TGF-β1 on chronic constriction injury (CCI)-induced neuropathic pain in rats. We demonstrated that sciatic nerve injury caused a downregulation of endogenous TGF-β1 levels on the ipsilateral side of the lumbar spinal dorsal gray matter, and that the i.t. administration of TGF-β1 (.01–10 ng) significantly attenuated CCI-induced thermal hyperalgesia in neuropathic rats. TGF-β1 significantly inhibited CCI-induced spinal neuroinflammation, microglial and astrocytic activation, and upregulation of tumor necrosis factor-α. Moreover, i.t. TGF-β1 significantly attenuated the CCI-induced downregulation of glutamate transporter 1, the glutamate aspartate transporter, and the excitatory amino acid carrier 1 on the ipsilateral side. Furthermore, i.t. TGF-β1 significantly decreased the concentrations of 2 excitatory amino acids, aspartate and glutamate, in the spinal dialysates in CCI rats. In summary, we conclude that the mechanisms of the antinociceptive effects of i.t. TGF-β1 in neuropathy may include attenuation of spinal neuroinflammation, attenuation, or upregulation of glutamate transporter downregulation, and a decrease of spinal extracellular excitatory amino acids. Perspective Clinically, medical treatment is usually initiated after the onset of intractable pain. Therefore, in the present study, i.t. TGF-β1 was designed to be administered 2 weeks after the establishment of CCI pain. Compared to the continuous TGF-β1 infusion mode, single-dose administration seems more convenient and practical to use.
ISSN:1526-5900
1528-8447
DOI:10.1016/j.jpain.2013.08.010