Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide

•TiO2 and WO3/TiO2 (2 and 5%) were tested in the photocatalytic malathion degradation.•The use of solar radiation in the photocatalytic degradation process was evaluated.•Modified catalyst showed greater photocatalytic activity than pure TiO2.•The mineralization rate was improved when WO3 content on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2013-12, Vol.263, p.36-44
Hauptverfasser: Ramos-Delgado, N.A., Gracia-Pinilla, M.A., Maya-Treviño, L., Hinojosa-Reyes, L., Guzman-Mar, J.L., Hernández-Ramírez, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•TiO2 and WO3/TiO2 (2 and 5%) were tested in the photocatalytic malathion degradation.•The use of solar radiation in the photocatalytic degradation process was evaluated.•Modified catalyst showed greater photocatalytic activity than pure TiO2.•The mineralization rate was improved when WO3 content on TiO2 was 2%. In this study, the solar photocatalytic activity (SPA) of WO3/TiO2 photocatalysts synthesized by the sol–gel method with two different percentages of WO3 (2 and 5%wt) was evaluated using malathion as a model contaminant. For comparative purpose bare TiO2 was also prepared by sol–gel process. The powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, diffuse reflectance UV–vis spectroscopy (DRUV–vis), specific surface area by the BET method (SSABET), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy with a high annular angle dark field detector (STEM-HAADF). The XRD, Raman, HRTEM and STEM-HAADF analyses indicated that WO3 was present as a monoclinic crystalline phase with nanometric cluster sizes (1.1±0.1nm for 2% WO3/TiO2 and 1.35±0.3nm for 5% WO3/TiO2) and uniformly dispersed on the surface of TiO2. The particle size of the materials was 19.4±3.3nm and 25.6±3nm for 2% and 5% WO3/TiO2, respectively. The SPA was evaluated on the degradation of commercial malathion pesticide using natural solar light. The 2% WO3/TiO2 photocatalyst exhibited the best photocatalytic activity achieving 76% of total organic carbon (TOC) abatement after 300min compared to the 5% WO3/TiO2 and bare TiO2 photocatalysts, which achieved 28 and 47% mineralization, respectively. Finally, experiments were performed to assess 2% WO3/TiO2 catalyst activity on repeated uses; after several successive cycles its photocatalytic activity was retained showing long-term stability.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2013.07.058