Aptamer-based array electrodes for quantitative interferon-γ detection

Present work describes the methylene blue tagged thiolated aptamer-modified gold micro-array based biosensor for specific detection of IFN-γ. The microchips with the microelectrode array were fabricated using standard silicon microfabrication technologies, and modified with methylene blue tagged apt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2014-03, Vol.53, p.257-262
Hauptverfasser: YU CHEN, TZE SIAN PUI, KONGSUPHOL, Patthara, KUM CHEONG TANG, ARYA, Sunil K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Present work describes the methylene blue tagged thiolated aptamer-modified gold micro-array based biosensor for specific detection of IFN-γ. The microchips with the microelectrode array were fabricated using standard silicon microfabrication technologies, and modified with methylene blue tagged aptamer using standard gold thiol chemistry. Electrodes were characterized and tested using Cyclic Voltammetric (CV) and Square Wave Voltammetry (SQW) measurements in a standard three-electrode format at room temperature. On an aptamer modified electrode, aptamer density was estimated to be about 4.4 × 10(12)molecules/cm(2). In IFN-γ studies, oxidation peak currents were found to decrease and more than 50% signal suppression was achieved at 500 ng/ml. Further, the magnitude of signal suppression was found to be logarithmically proportional to the IFN-γ in the concentration range of 1-500 ng/ml, with a detection limit of 1.3 ng/ml (i.e. 0.8 fmol in used sample volume of 10 µl). Biosensor showed negligible signal changes (5%) in a very high non-specific protein background, while still able to differentiate target protein IFN-γ at 5 ng/ml. The results indicated that our sensor binds selectively to target molecules, and the non-specific binding where adsorption of BSA protein molecules may be effectively omitted from consideration.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2013.09.046