Distribution of glass transition temperature in multilayered poly(methyl methacrylate) thin film supported on a Si substrate as studied by neutron reflectivity
We studied the distribution of glass transition temperature (Tg) through neutron reflectivity in a poly(methyl methacrylate) (PMMA) thin film supported on a silicon substrate with a five-layered PMMA thin film consisting of deuterated-PMMA and hydrogenated-PMMA. The depth distribution of Tg was succ...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2013-09, Vol.88 (3), p.032601-032601, Article 032601 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We studied the distribution of glass transition temperature (Tg) through neutron reflectivity in a poly(methyl methacrylate) (PMMA) thin film supported on a silicon substrate with a five-layered PMMA thin film consisting of deuterated-PMMA and hydrogenated-PMMA. The depth distribution of Tg was successfully observed in the PMMA thin film. Compared to the previously reported distribution of Tg in a polystyrene thin film, the presence of a long-range interfacial effect, supposedly caused by an interaction between PMMA and the substrate, is considered to be responsible for the differences in both the distribution of Tg and the thickness dependence of Tg in both polymers. Therefore, it is expected that the thickness dependence of Tg reported for single-layered polymer thin films can, in principle, be understood from the viewpoint of the difference in the depth distribution of Tg. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/physreve.88.032601 |