Localization of vanadium-containing particles in the lungs of uranium/vanadium miners

Several geological formations of the Utah-Colorado mining region mined for uranium ore during and after World War II had been mined earlier for vanadium. Therefore, most miners and millers from that region were exposed to those metals' ores or tailings at one time or another. Preliminary invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological trace element research 1987-08, Vol.13 (1), p.275-282
Hauptverfasser: Paschoa, A S, Wrenn, M E, Singh, N P, Bruenger, F W, Miller, S C, Cholewa, M, Jones, K W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several geological formations of the Utah-Colorado mining region mined for uranium ore during and after World War II had been mined earlier for vanadium. Therefore, most miners and millers from that region were exposed to those metals' ores or tailings at one time or another. Preliminary investigation to determine uranium and vanadium retained in the lungs of a former uranium miner and miller from this region, who died of lung cancer (mesothelioma), showed a high nonuniform distribution of vanadium. This observation led to the hypothesis that the vanadium content in the lungs could be associated with inhaled particles. Further examination of spectra of characteristic X-rays obtained by scanning particle-induced X-ray emission (microPIXE) of an autopsy sample of this lung indicated that vanadium was indeed present in localized sites within the 20-μm spatial resolution of the proton beam. This work points out that the microPIXE-RBS (Rutherford backscattering) test for vanadium can be used for site localization of inhaled particles retained in the lungs. Further studies are in progress to: (i) locate uranium-bearing particles in lung tissues of former uranium miners and millers; and (ii) evaluate the local doses of alpha radiation received from these particles.
ISSN:0163-4984
1559-0720
DOI:10.1007/BF02796638