Singlet exciton fission in solution

Singlet exciton fission, the spin-conserving process that produces two triplet excited states from one photoexcited singlet state, is a means to circumvent the Shockley–Queisser limit in single-junction solar cells. Although the process through which singlet fission occurs is not well characterized,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2013-12, Vol.5 (12), p.1019-1024
Hauptverfasser: Walker, Brian J., Musser, Andrew J., Beljonne, David, Friend, Richard H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Singlet exciton fission, the spin-conserving process that produces two triplet excited states from one photoexcited singlet state, is a means to circumvent the Shockley–Queisser limit in single-junction solar cells. Although the process through which singlet fission occurs is not well characterized, some local order is thought to be necessary for intermolecular coupling. Here, we report a triplet yield of 200% and triplet formation rates approaching the diffusion limit in solutions of bis(triisopropylsilylethynyl (TIPS)) pentacene. We observe a transient bound excimer intermediate, formed by the collision of one photoexcited and one ground-state TIPS-pentacene molecule. The intermediate breaks up when the two triplets separate to each TIPS-pentacene molecule. This efficient system is a model for future singlet-fission materials and for disordered device components that produce cascades of excited states from sunlight. Singlet exciton fission produces two triplet excited states from one excited singlet through interchromophoric coupling, which is thought to require local order. Now, a triplet yield of 200% and diffusion-limited triplet formation are reported in solutions of TIPS pentacene. Kinetic studies revealed an excimer intermediate and enabled suggestions of design principles for the promotion of singlet fission.
ISSN:1755-4330
1755-4349
DOI:10.1038/nchem.1801