production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes
In the summer of 1983, immature embryos from 101 selfed inbred lines and germplasm stocks of Zea mays L. were examined for their ability to produce callus cultures capable of plant regeneration (regenerable cultures) using a medium with which some limited success had previously been obtained. Forty-...
Gespeichert in:
Veröffentlicht in: | Planta 1985-01, Vol.165 (3), p.322-332 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the summer of 1983, immature embryos from 101 selfed inbred lines and germplasm stocks of Zea mays L. were examined for their ability to produce callus cultures capable of plant regeneration (regenerable cultures) using a medium with which some limited success had previously been obtained. Forty-nine of the genotypes (49%) produced callus which visually appeared similar to callus previously cultured and shown to be capable of plant regeneration. After five months, 38 of these genotypes were alive in culture and plants were subsequently regenerated from 35 (92%) of them. No correlation was observed between plant regeneration and callus growth rate, the vivipary mutation (genes vp1, 2, 5, 7, 8 and 9), or published vigor ratings based on K+ uptake by roots. When F1 hybrid embryos were cultured, 97% of the hybrids having at least one regenerable parent also produced callus capable of plant regeneration. No regenerable cultures were obtained from any hybrid lacking a parent capable of producing a regenerable callus culture. In the summer of 1984, immature embryos from 218 additional inbred lines and germplasm stocks were plated and examined for their ability to produce regenerable callus cultures on media containing altered micronutrient concentrations, 3,6-dichloro-o-anisic acid (dicamba), glucose, and elevated levels of vitamin-free casamino acids and thiamine. Of these genotypes 199 (91%) produced callus that was regenerable in appearance. In the 1984 study, plant regeneration was noted in many commercially important inbreds, including B73, Mo17, B84, A632, A634, Ms71, W117, H993H95 and Cm105. Thus tissue-culture techniques are now available to obtain callus cultures capable of plant regeneration from immature embryos of most maize genotypes. |
---|---|
ISSN: | 0032-0935 1432-2048 |
DOI: | 10.1007/BF00392228 |