Field-Based Approach for Assessing the Impact of Treated Pulp and Paper Mill Effluent on Endogenous Metabolites of Fathead Minnows (Pimephales promelas)

A field-based metabolomic study was conducted during a shutdown of a pulp and paper mill (PPM) to assess the impacts of treated PPM effluent on endogenous polar metabolites in fathead minnow (FHM; Pimephales promelas) livers. Caged male and female FHMs were deployed at a Great Lakes area of concern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2013-09, Vol.47 (18), p.10628-10636
Hauptverfasser: Davis, J. M, Collette, T. W, Villeneuve, D. L, Cavallin, J. E, Teng, Q, Jensen, K. M, Kahl, M. D, Mayasich, J. M, Ankley, G. T, Ekman, D. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A field-based metabolomic study was conducted during a shutdown of a pulp and paper mill (PPM) to assess the impacts of treated PPM effluent on endogenous polar metabolites in fathead minnow (FHM; Pimephales promelas) livers. Caged male and female FHMs were deployed at a Great Lakes area of concern during multiple periods (pre-, during, and post-shutdown) near the outflow for a wastewater treatment plant. Influent to this plant is typically 40% PPM effluent by volume. Additional FHMs were exposed to reference lake water under laboratory conditions. A bioassay using T47D-KBluc cells showed that estrogenic activity of receiving water near the outflow declined by 46% during the shutdown. We then used 1H NMR spectroscopy and principal component analysis to profile abundances of hepatic endogenous metabolites for FHMs. Profiles for males deployed pre-shutdown in receiving water were significantly different from those for laboratory-control males. Profiles were not significantly different for males deployed during the shutdown, but they were significant again for those deployed post-shutdown. Impacts of treated effluent from this PPM were sex-specific, as differences among profiles of females were largely nonsignificant. Thus, we demonstrate the potential utility of field-based metabolomics for performing biologically based exposure monitoring and evaluating remediation efforts occurring throughout the Great Lakes and other ecosystems.
ISSN:0013-936X
1520-5851
DOI:10.1021/es401961j