Carbon and oxygen-isotope stratigraphy of the Early Cretaceous carbonate platform of Pădurea Craiului (Apuseni Mountains, Romania): A chemostratigraphic correlation and paleoenvironmental tool

► Carbon and oxygen-isotope variations in carbonate rocks were investigated. ► Major perturbations of the carbon and oxygen cycles were identified. ► Two major oceanic anoxic events were recognized. ► The positive and negative anomalies are used for stratigraphic correlation. Stable C and O isotope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geochemistry 2013-05, Vol.32, p.3-16
Hauptverfasser: Papp, Delia Cristina, Cociuba, Ioan, Lazăr, Daniel Florin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:► Carbon and oxygen-isotope variations in carbonate rocks were investigated. ► Major perturbations of the carbon and oxygen cycles were identified. ► Two major oceanic anoxic events were recognized. ► The positive and negative anomalies are used for stratigraphic correlation. Stable C and O isotope records were obtained from carbonate rocks spanning the Hauterivian to Cenomanian interval collected in several sections from the carbonate platform of Pădurea Craiului (Apuseni Mountains, Romania). In the absence of some key biostratigraphic marker species, stable isotopes were applied as a tool for stratigraphic correlation and dating. The composite δ13C and δ18O curves for the Early Cretaceous shows variable conditions with large positive and negative excursions and provide information on past environmental changes. The Hauterivian and the Barremian limestones (Blid Formation) display lower δ13C values (−2.8‰ to +2.9‰) relative to the Aptian–Albian deposits (−2.6‰ to +5.4‰) (Ecleja, Valea Măgurii and Vârciorog Formations). The red detrital formation (Albian–Cenomanian) is characterized by a highly variable distribution of the δ13C values (−3.5‰ to +3.9‰). Based on the similarities between the C-isotope curve established in Pădurea Craiului and from other sections in the Tethyan and the Pacific regions, two major oceanic anoxic events characterized by δ13C positive excursions were clearly recognized. The first is the OAE1a event (Early Aptian) in the upper part of the Ecleja Formation and the Valea Măgurii Formation. The second is the OAE1b event (Late Aptian–Albian) in the upper part of the Vârciorog Formation and in the Subpiatră Member. The position of the Aptian/Albian boundary is estimated to be at the upper part of the Vârciorog Formation, immediately after the beginning of the δ13C positive excursion. The δ13C data show major negative excursions during the Barremian (Blid Formation), Early Aptian (Ecleja Formation), and Late Aptian (Vârciorog Formation). The O isotope variation pattern (−10.2‰ to −2.1‰) is consistent with progressively warming temperatures during the Early Barremian followed by a cooling period. A subsequent warming period culminated in the Early Aptian. A significant cooling phase corresponds to the Late Aptian and Early Albian and the climate cooled again during the Late Albian and into the Early Cenomanian stage. The data provide a better understanding of the Early Cretaceous sedimentation cycles in Pădurea Craiului and create a more
ISSN:0883-2927
1872-9134
DOI:10.1016/j.apgeochem.2012.09.005