Extra-torque of human tibialis anterior during electrical stimulation with linearly varying frequency and amplitude trains

Abstract This work aimed to characterise the whole human muscle input/output law during electrical stimulation with triangular varying frequency and amplitude trains through combined analysis of torque, mechanomyogram (MMG) and electromyogram (EMG). The tibialis anterior (TA) of ten subjects (age 23...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electromyography and kinesiology 2013-12, Vol.23 (6), p.1375-1383
Hauptverfasser: Orizio, C, Celichowski, J, Toscani, F, Calabretto, C, Bissolotti, L, Gobbo, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract This work aimed to characterise the whole human muscle input/output law during electrical stimulation with triangular varying frequency and amplitude trains through combined analysis of torque, mechanomyogram (MMG) and electromyogram (EMG). The tibialis anterior (TA) of ten subjects (age 23–35 years) was investigated during static contraction obtained through neuromuscular electrical stimulation. After potentiation, TA underwent two 15 s stimulation patterns: (a) frequency triangle (FT): 2 > 35 > 2 Hz at Vmax (amplitude providing full motor unit recruitment); (b) amplitude triangle (AT): Vmin > Vmax > Vmin (Vmin providing TA least mechanical response) at 35 Hz. 2 > 35 Hz or Vmin > Vmax as well as 35 > 2 Hz or Vmax > Vmin were defined as up-going ramp (UGR) and down-going ramp (DGR), respectively. TA torque, MMG and EMG were detected by a load cell, an optical laser distance sensor and a probe with two silver bar electrodes, respectively. For both FT and AT, only the two mechanical signals resulted always larger in DGR than in UGR, during AT extra-torque and extra-MMG were present even in the first 1/3 of the amplitude range where EMG data presented no significant differences between DGR and UGR. Our data suggest that extra-torque and extra-displacement are evident for both FT and AT, being mainly attributed to an intrinsic muscle property.
ISSN:1050-6411
1873-5711
DOI:10.1016/j.jelekin.2013.07.008