Differences in knee joint kinematics and forces after posterior cruciate retaining and stabilized total knee arthroplasty
Abstract Background Posterior cruciate ligament (PCL) retaining (CR) and -sacrificing (PS) total knee arthroplasties (TKA) are widely-used to treat osteoarthritis of the knee joint. The PS design substitutes the function of the PCL with a cam-spine mechanism which may produce adverse changes to join...
Gespeichert in:
Veröffentlicht in: | The knee 2013-12, Vol.20 (6), p.416-421 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Background Posterior cruciate ligament (PCL) retaining (CR) and -sacrificing (PS) total knee arthroplasties (TKA) are widely-used to treat osteoarthritis of the knee joint. The PS design substitutes the function of the PCL with a cam-spine mechanism which may produce adverse changes to joint kinematics and kinetics. Methods CR- and PS-TKA were performed on 11 human knee specimens. Joint kinematics were measured with a dynamic knee simulator and motion tracking equipment. In-situ loads of the PCL and cam-spine were measured with a robotic force sensor system. Partial weight bearing flexions were simulated and external forces were applied. Results The PS-TKA rotated significantly less throughout the whole flexion range compared to the CR-TKA. Femoral roll back was greater in the PS-TKA; however, this was not correlated with lower quadriceps forces. Application of external loads produced significantly different in-situ force profiles between the TKA systems. Conclusions Our data demonstrate that the PS-design significantly alters kinematics of the knee joint. Our data also suggest the cam-spine mechanism may have little influence on high flexion kinematics (such as femoral rollback) with most of the load burden shared by supporting implant and soft-tissue structures. |
---|---|
ISSN: | 0968-0160 1873-5800 |
DOI: | 10.1016/j.knee.2013.03.005 |