Transport of phenylalanine into vacuoles isolated from barley mesophyll protoplasts
The energy-dependent transport of phenylalanine into isolated vacuoles of barley (Hordeum vulgare L.) mesophyll protoplasts has been studied by silicone-layer floatation filtering. The uptake of this aromatic amino acid into the vacuolar compartment is markedly increased by MgATP, showing saturation...
Gespeichert in:
Veröffentlicht in: | Planta 1988-12, Vol.176 (3), p.378-382 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The energy-dependent transport of phenylalanine into isolated vacuoles of barley (Hordeum vulgare L.) mesophyll protoplasts has been studied by silicone-layer floatation filtering. The uptake of this aromatic amino acid into the vacuolar compartment is markedly increased by MgATP, showing saturation kinetics; the Km values were 0.5 mM for MgATP and 1.2 mM for phenylalanine. Vmax for phenylalanine transport was estimated to 140 nmol phenylalanine·(mg·Chl)-1·h-1. The transport shows a distinct pH optimum at 7.3 and is markedly inhibited by 40 mM nitrate. Azide (1 mM) and vanadate (400 μM) had no or little effect on rates of transport while p-fluorophenylalanine seemed to be an effective inhibitor, indicating a possible competition at an amino-acid carrier. Ionophores such as valinomycin, nigericin or gramicidin were strong inhibitors of phenylalanine transport, indicating that this process is coupled to both the transmembrane pH gradient (ΔpH) and the transmembrane potential (Δψ). |
---|---|
ISSN: | 0032-0935 1432-2048 |
DOI: | 10.1007/BF00395418 |