A design study on MOX-fueled small fast reactors for standardization of a small fast nuclear reactor system

A way of development to standardize a small fast nuclear reactor system, which is considered one of the suitable concepts at next generation for satisfying such needs as generality, small dependence on natural resources, safety and non-proliferation, is proposed. This process consists of three steps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in nuclear energy (New series) 2000, Vol.37 (1), p.283-290
Hauptverfasser: Uto, Nariaki, Hayafune, Hiroki, Wakabayashi, Toshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A way of development to standardize a small fast nuclear reactor system, which is considered one of the suitable concepts at next generation for satisfying such needs as generality, small dependence on natural resources, safety and non-proliferation, is proposed. This process consists of three steps : the first is to demonstrate the basic system within a short period based on current techniques, the second is to achieve greatly higher economy, and the final is to standardize the commercial system that can economically compete with or overcome current light water reactors. A technical investigation is conducted on the performance of a mixed-oxide (MOX)-fueled small fast reactor with a reflector-driven reactivity control system to satisfy the needs at the first step, considering plenty of accomplishments on the MOX fuel and its advantage for limiting the duration of development to the level required at the stage. The results obtained from a series of neutronic and thermal-hydraulic calculations show the feasibility of a small fast reactor that produces the electric power of about 50MW, achieves about two-year consecutive operation with high safety performance and is greatly flexible for updating the system. A mixed-nitride-fueled core is found to be promising past the first stage.
ISSN:0149-1970
DOI:10.1016/S0149-1970(00)00060-3