Mechanisms for adsorption of organic bases on hydrated smectite surfaces
Mechanisms by which organic bases are adsorbed on hydrated smectite surfaces were investigated. Three Ca-saturated reference smectites (Otay, SPV, and Panther Creek) were dispersed in distilled water containing 5 micromol of pyridine or 3-butylpyridine. The pH was adjusted to between 7.5 and 3 using...
Gespeichert in:
Veröffentlicht in: | Environmental toxicology and chemistry 1999-08, Vol.18 (8), p.1668-1672 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mechanisms by which organic bases are adsorbed on hydrated smectite surfaces were investigated. Three Ca-saturated reference smectites (Otay, SPV, and Panther Creek) were dispersed in distilled water containing 5 micromol of pyridine or 3-butylpyridine. The pH was adjusted to between 7.5 and 3 using 0.01 M HCl. After a 2-h equilibration, the amount of pyridine or 3-butylpyridine adsorbed on the clay and the amount of Ca desorbed from the clay were determined. Negligible amounts of pyridine were adsorbed by the Ca-smectites in the neutral systems (pH > 7); however, most of the added pyridine was adsorbed on the smectites in the acidified systems (pH < 5). Equivalent amounts of Ca(2+) were desorbed from the clays, indicating that pyridine was adsorbed as a protonated species by cation exchange. By contrast, 40 to 90% of added 3-butylpyridine was adsorbed on the smectites at neutral pHs, whereas only small amounts of Ca(2+) were desorbed. The results suggest that 3-butylpyridine is initially retained by hydrophobic bonding between the alkyl side chain of the molecule and hydrophobic nanosites located between the charge sites on smectite surfaces. Surface acidity catalyzed protonation 1 to 1.5 pH units above the pK(a) of the bases. |
---|---|
ISSN: | 0730-7268 1552-8618 |
DOI: | 10.1002/etc.5620180809 |