Entanglement rates and area laws

We prove an upper bound on the maximal rate at which a Hamiltonian interaction can generate entanglement in a bipartite system. The scaling of this bound as a function of the subsystem dimension on which the Hamiltonian acts nontrivially is optimal and is exponentially improved over previously known...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2013-10, Vol.111 (17), p.170501-170501, Article 170501
Hauptverfasser: Van Acoleyen, Karel, Mariën, Michaël, Verstraete, Frank
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove an upper bound on the maximal rate at which a Hamiltonian interaction can generate entanglement in a bipartite system. The scaling of this bound as a function of the subsystem dimension on which the Hamiltonian acts nontrivially is optimal and is exponentially improved over previously known bounds. As an application, we show that a gapped quantum many-body spin system on an arbitrary lattice satisfies an area law for the entanglement entropy if and only if any other state with which it is adiabatically connected (i.e., any state in the same phase) also satisfies an area law.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.111.170501