Review on microstructure evolution in Sn–Ag–Cu solders and its effect on mechanical integrity of solder joints

The use of Pb-bearing solders in electronic assemblies is avoided in many countries due to the inherent toxicity and environmental risks associated with lead. Although a number of “Pb-free” alloys have been invented, none of them meet all the standards generally satisfied by a conventional Pb–Sn all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2013-09, Vol.24 (9), p.3149-3169
Hauptverfasser: Sona, Mrunali, Prabhu, K. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of Pb-bearing solders in electronic assemblies is avoided in many countries due to the inherent toxicity and environmental risks associated with lead. Although a number of “Pb-free” alloys have been invented, none of them meet all the standards generally satisfied by a conventional Pb–Sn alloy. A large number of reliability problems still exist with lead free solder joints. Solder joint reliability depends on mechanical strength, fatigue resistance, hardness, coefficient of thermal expansion which are influenced by the microstructure, type and morphology of inter metallic compounds (IMC). In recent years, Sn rich solders have been considered as suitable replacement for Pb bearing solders. The objective of this review is to study the evolution of microstructural phases in commonly used lead free xSn–yAg–zCu solders and the various factors such as substrate, minor alloying, mechanical and thermo-mechanical strains which affect the microstructure. A complete understanding of the mechanisms that determine the formation and growth of interfacial IMCs is essential for developing solder joints with high reliability. The data available in the open literature have been reviewed and discussed.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-013-1240-0