Characterization of Co-blockers for Simple Perfect Matchings in a Convex Geometric Graph

Consider the complete convex geometric graph on 2 m vertices, CGG ( 2 m ) , i.e., the set of all boundary edges and diagonals of a planar convex 2 m -gon P . In (Keller and Perles, Israel J Math 187:465–484, 2012 ), the smallest sets of edges that meet all the simple perfect matchings (SPMs) in CGG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2013-09, Vol.50 (2), p.491-502
Hauptverfasser: Keller, Chaya, Perles, Micha A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider the complete convex geometric graph on 2 m vertices, CGG ( 2 m ) , i.e., the set of all boundary edges and diagonals of a planar convex 2 m -gon P . In (Keller and Perles, Israel J Math 187:465–484, 2012 ), the smallest sets of edges that meet all the simple perfect matchings (SPMs) in CGG ( 2 m ) (called “blockers”) are characterized, and it is shown that all these sets are caterpillar graphs with a special structure, and that their total number is m · 2 m − 1 . In this paper we characterize the co-blockers for SPMs in CGG ( 2 m ) , that is, the smallest sets of edges that meet all the blockers. We show that the co-blockers are exactly those perfect matchings M in CGG ( 2 m ) where all edges are of odd order, and two edges of M that emanate from two adjacent vertices of P never cross. In particular, while the number of SPMs and the number of blockers grow exponentially with m , the number of co-blockers grows super-exponentially.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-013-9509-x