Experimental Investigation of Seepage Properties of Fractured Rocks Under Different Confining Pressures

The effectiveness of transmitting underground water in rock fractures is strongly influenced by the widths of the fractures and their interconnections. However, the geometries needed for water flow in fractured rock are also heavily controlled by the confining pressure conditions. This paper is inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rock mechanics and rock engineering 2013-09, Vol.46 (5), p.1135-1144
Hauptverfasser: Ma, D., Miao, X. X., Chen, Z. Q., Mao, X. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effectiveness of transmitting underground water in rock fractures is strongly influenced by the widths of the fractures and their interconnections. However, the geometries needed for water flow in fractured rock are also heavily controlled by the confining pressure conditions. This paper is intended to study the seepage properties of fractured rocks under different confining pressures. In order to do this, we designed and manufactured a water flow apparatus that can be connected to the electro-hydraulic servo-controlled test system MTS815.02, which provides loading and exhibits external pressures in the test. Using this apparatus, we tested fractured mudstone, limestone and sandstone specimens and obtained the relationship between seepage properties and variations in confining pressure. The calculation of the seepage properties based on the collection of water flow and confining pressure differences is specifically influenced by non-Darcy flow. The results show that: (1) The seepage properties of fractured rocks are related to confining pressure, i.e. with the increase of confining pressure, the permeability decreases and the absolute value of non-Darcy flow coefficient increases. (2) The sandstone coefficients and range from to  m 2 and to  m −1 , respectively, and exhibit a greater change compared to coefficients of mudstone and limestone. (3) From the regression analysis of experimental data, it is concluded that the polynomial function is a better fit than the power and logarithmic functions. The results obtained can provide an important reference for understanding the stability of rock surrounding roadways toward prevention of underground water gushing-out, and for developing underground resources (e.g. coal).
ISSN:0723-2632
1434-453X
DOI:10.1007/s00603-012-0329-8