An Autocorrelation Term Method for Curve Fitting
The least-squares method is the most popular method for fitting a polynomial curve to data. It is based on minimizing the total squared error between a polynomial model and the data. In this paper we develop a different approach that exploits the autocorrelation function. In particular, we use the n...
Gespeichert in:
Veröffentlicht in: | ISRN applied mathematics 2013-01, Vol.2013, p.1-4 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The least-squares method is the most popular method for fitting a polynomial curve to data. It is based on minimizing the total squared error between a polynomial model and the data. In this paper we develop a different approach that exploits the autocorrelation function. In particular, we use the nonzero lag autocorrelation terms to produce a system of quadratic equations that can be solved together with a linear equation derived from summing the data. There is a maximum of 2M solutions when the polynomial is of degree M. For the linear case, there are generally two solutions. Each solution is consistent with a total error of zero. Either visual examination or measurement of the total squared error is required to determine which solution fits the data. A comparison between the comparable autocorrelation term solution and linear least squares shows negligible difference. |
---|---|
ISSN: | 2090-5572 2090-5564 2090-5572 |
DOI: | 10.1155/2013/346230 |