Toxicity, distribution, and accumulation of silver nanoparticles in Wistar rats
The bactericidal effect of silver nanoparticles (SNP) has lead to their application in several products mainly in the medicine field. This study analyzed the distribution, accumulation, and toxicity in principal organs of Wistar rats exposed to SNP suspensions by oral administration. Two sizes of wa...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2013-06, Vol.15 (6), p.1-12, Article 1702 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The bactericidal effect of silver nanoparticles (SNP) has lead to their application in several products mainly in the medicine field. This study analyzed the distribution, accumulation, and toxicity in principal organs of Wistar rats exposed to SNP suspensions by oral administration. Two sizes of washed SNP (14 and 36 nm) were prepared, characterized, and redispersed in deionized water. Each suspension was administrated to Wistar rats by oral way for 55 days; after finishing this treatment time, rats were sacrificed by anesthesia overdose. Organs were collected, processed, and prepared; then, accumulation and concentrations of SNP were obtained using inductively coupled plasma mass spectrometry (ICP-MS). Toxicity was determined by clinical chemistry and hematology from blood samples in three different periods; light microscopy (LM) and scanning electron microscopy (SEM) were applied to evaluate histopathology in tissues. Silver concentrations were higher in small intestine, followed by kidney, liver, and brain. Clinical chemistry and hematology showed altered values in blood urea nitrogen, total proteins, and mean corpuscular hemoglobin, concentration values had statistical difference in both groups (14 and 36 nm) (
p
|
---|---|
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1007/s11051-013-1702-6 |