Understanding of ferromagnetism in thiol capped Mn doped CdS nanocrystals
The evolution of ferromagnetism has been investigated in thiol (2-mercaptoethanol) capped Mn doped CdS nanoparticles synthesized at various temperatures by sol-gel reverse micelle mechanism. X-ray diffraction measurements reveal a structural phase transformation from wurtzite to zinc blende structur...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2013-09, Vol.114 (9) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The evolution of ferromagnetism has been investigated in thiol (2-mercaptoethanol) capped Mn doped CdS nanoparticles synthesized at various temperatures by sol-gel reverse micelle mechanism. X-ray diffraction measurements reveal a structural phase transformation from wurtzite to zinc blende structure with the increase in synthesis temperature of Mn doped nanocryatals. Magnetic measurements suggest that the antiferromagnetic interactions of Mn2+ ions within Mn—cluster in Mn doped CdS nanocrystals synthesized at lower temperature (∼17 °C) reduce the total magnetic moment at ambient temperature. Whereas the isolated Mn2+ ions in nanocrystals synthesized above 70 °C enhance the magnetic moment due to the sp-d exchange interaction at ambient temperature. It has been observed that the magnetic moments in all samples synthesized at various temperatures do not saturate even at lowest temperature, 5 K. The core diamagnetism in doped nanocrystals synthesized at low temperature (∼17 °C) is mostly due to the presence of magnetic ions around the surface, whereas these ions exist randomly throughout the crystal for samples synthesized at high temperature (∼70 °C), as a result core diamagnetism vanishes. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4820258 |