In-Plane Parallel Scanning: A Microarray Technology for Point-of-Care Testing

A new microarray technology is described for rapid, inexpensive, multiplex diagnostics assays. Referred to as “in-plane parallel scanning” (IPPS), this technology replaces expensive laser scanning with a grid of 100-μm-wide waveguides embedded in the chip’s substrate, enabling real-time quantificati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2010-11, Vol.82 (21), p.8856-8865
Hauptverfasser: Duer, Reuven, Lund, Russell, Tanaka, Richard, Christensen, Douglas A, Herron, James N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8865
container_issue 21
container_start_page 8856
container_title Analytical chemistry (Washington)
container_volume 82
creator Duer, Reuven
Lund, Russell
Tanaka, Richard
Christensen, Douglas A
Herron, James N
description A new microarray technology is described for rapid, inexpensive, multiplex diagnostics assays. Referred to as “in-plane parallel scanning” (IPPS), this technology replaces expensive laser scanning with a grid of 100-μm-wide waveguides embedded in the chip’s substrate, enabling real-time quantification of molecular complex formation on the chip’s surface. Compared to conventional microarray technology, IPPS has advantages of shorter assay time and lower instrument cost and complexity so that the platform can potentially be used in point-of-care (POC) settings. Two different chip formats are described: a low-density microarray with 10 sensing wells (IPPS-10) and a medium-density one with 100 sensing wells (IPPS-100). Performance was evaluated in two different proof-of-principle immunoassays: interleukin-1β (IL-1β) and Clostridium difficile toxin A. The two assays gave similar limits of detection of 0.67 and 0.94 pM, respectively. A saturation kinetics model described the sensor response with apparent dissociation constants of 511 pM for IL-1β and 6.47 nM for C. difficile toxin A toxoid. The multiplexing capabilities of the IPPS technology were also demonstrated in a multiplex assay for both analytes on the same IPPS-10 chip. Based on these results, the IPPS technology holds promise for translating diagnostic microarrays into near-patient environments.
doi_str_mv 10.1021/ac101571b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448218722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1448218722</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-4b9b048f8eb231cd7716a09f112a9508879c8a0f03ebe5c24f982607030bcab33</originalsourceid><addsrcrecordid>eNpl0E1PGzEQBmCrKiqB9tA_gFaVKrWHpTNj766XWxSVgpSISMB5NWtsumhjg50c8u9rREokOPngZ75eIb4inCIQ_mKDgFWD_QcxwYqgrLWmj2ICALKkBuBQHKX0AIDZ1Z_EIUGrqpZgIhaXvlyO7G2x5MjjaMfi2rD3g78_K6bFYjAxcIy8LW6s-evDGO63hQuxWIbBr8vgyhlHmz_TOpd8FgeOx2S_7N5jcXv--2Z2Uc6v_lzOpvOSZUPrUvVtD0o7bXuSaO6aBmuG1iEStxVo3bRGMziQtreVIeVaTTU0IKE33Et5LH689H2M4WmTZ3erIRk7Ph8SNqlDpTShbogy_faGPoRN9Hm7TqPSoGrCjH6-oHxtStG67jEOK47bDqF7jrh7jTjbk13DTb-yd6_yf6YZfN8BToZHF9mbIe2dlJoUVXvHJu2Xej_wH9vci-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>814804621</pqid></control><display><type>article</type><title>In-Plane Parallel Scanning: A Microarray Technology for Point-of-Care Testing</title><source>ACS Publications</source><source>MEDLINE</source><creator>Duer, Reuven ; Lund, Russell ; Tanaka, Richard ; Christensen, Douglas A ; Herron, James N</creator><creatorcontrib>Duer, Reuven ; Lund, Russell ; Tanaka, Richard ; Christensen, Douglas A ; Herron, James N</creatorcontrib><description>A new microarray technology is described for rapid, inexpensive, multiplex diagnostics assays. Referred to as “in-plane parallel scanning” (IPPS), this technology replaces expensive laser scanning with a grid of 100-μm-wide waveguides embedded in the chip’s substrate, enabling real-time quantification of molecular complex formation on the chip’s surface. Compared to conventional microarray technology, IPPS has advantages of shorter assay time and lower instrument cost and complexity so that the platform can potentially be used in point-of-care (POC) settings. Two different chip formats are described: a low-density microarray with 10 sensing wells (IPPS-10) and a medium-density one with 100 sensing wells (IPPS-100). Performance was evaluated in two different proof-of-principle immunoassays: interleukin-1β (IL-1β) and Clostridium difficile toxin A. The two assays gave similar limits of detection of 0.67 and 0.94 pM, respectively. A saturation kinetics model described the sensor response with apparent dissociation constants of 511 pM for IL-1β and 6.47 nM for C. difficile toxin A toxoid. The multiplexing capabilities of the IPPS technology were also demonstrated in a multiplex assay for both analytes on the same IPPS-10 chip. Based on these results, the IPPS technology holds promise for translating diagnostic microarrays into near-patient environments.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac101571b</identifier><identifier>PMID: 20945920</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Applied sciences ; Bacteria ; Bacterial Toxins - analysis ; Chemistry ; Clostridium difficile - isolation &amp; purification ; Cytokines ; Diagnostics ; Enterocolitis, Pseudomembranous - diagnosis ; Enterotoxins - analysis ; Equipment Design ; Exact sciences and technology ; General, instrumentation ; Global environmental pollution ; Humans ; Interleukin-1beta - analysis ; Limit of Detection ; Measurement ; Microarray Analysis - instrumentation ; Miscellaneous ; Point-of-Care Systems ; Pollution ; Reaction kinetics</subject><ispartof>Analytical chemistry (Washington), 2010-11, Vol.82 (21), p.8856-8865</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-4b9b048f8eb231cd7716a09f112a9508879c8a0f03ebe5c24f982607030bcab33</citedby><cites>FETCH-LOGICAL-a372t-4b9b048f8eb231cd7716a09f112a9508879c8a0f03ebe5c24f982607030bcab33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac101571b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac101571b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23382425$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20945920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duer, Reuven</creatorcontrib><creatorcontrib>Lund, Russell</creatorcontrib><creatorcontrib>Tanaka, Richard</creatorcontrib><creatorcontrib>Christensen, Douglas A</creatorcontrib><creatorcontrib>Herron, James N</creatorcontrib><title>In-Plane Parallel Scanning: A Microarray Technology for Point-of-Care Testing</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A new microarray technology is described for rapid, inexpensive, multiplex diagnostics assays. Referred to as “in-plane parallel scanning” (IPPS), this technology replaces expensive laser scanning with a grid of 100-μm-wide waveguides embedded in the chip’s substrate, enabling real-time quantification of molecular complex formation on the chip’s surface. Compared to conventional microarray technology, IPPS has advantages of shorter assay time and lower instrument cost and complexity so that the platform can potentially be used in point-of-care (POC) settings. Two different chip formats are described: a low-density microarray with 10 sensing wells (IPPS-10) and a medium-density one with 100 sensing wells (IPPS-100). Performance was evaluated in two different proof-of-principle immunoassays: interleukin-1β (IL-1β) and Clostridium difficile toxin A. The two assays gave similar limits of detection of 0.67 and 0.94 pM, respectively. A saturation kinetics model described the sensor response with apparent dissociation constants of 511 pM for IL-1β and 6.47 nM for C. difficile toxin A toxoid. The multiplexing capabilities of the IPPS technology were also demonstrated in a multiplex assay for both analytes on the same IPPS-10 chip. Based on these results, the IPPS technology holds promise for translating diagnostic microarrays into near-patient environments.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Bacteria</subject><subject>Bacterial Toxins - analysis</subject><subject>Chemistry</subject><subject>Clostridium difficile - isolation &amp; purification</subject><subject>Cytokines</subject><subject>Diagnostics</subject><subject>Enterocolitis, Pseudomembranous - diagnosis</subject><subject>Enterotoxins - analysis</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Global environmental pollution</subject><subject>Humans</subject><subject>Interleukin-1beta - analysis</subject><subject>Limit of Detection</subject><subject>Measurement</subject><subject>Microarray Analysis - instrumentation</subject><subject>Miscellaneous</subject><subject>Point-of-Care Systems</subject><subject>Pollution</subject><subject>Reaction kinetics</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1PGzEQBmCrKiqB9tA_gFaVKrWHpTNj766XWxSVgpSISMB5NWtsumhjg50c8u9rREokOPngZ75eIb4inCIQ_mKDgFWD_QcxwYqgrLWmj2ICALKkBuBQHKX0AIDZ1Z_EIUGrqpZgIhaXvlyO7G2x5MjjaMfi2rD3g78_K6bFYjAxcIy8LW6s-evDGO63hQuxWIbBr8vgyhlHmz_TOpd8FgeOx2S_7N5jcXv--2Z2Uc6v_lzOpvOSZUPrUvVtD0o7bXuSaO6aBmuG1iEStxVo3bRGMziQtreVIeVaTTU0IKE33Et5LH689H2M4WmTZ3erIRk7Ph8SNqlDpTShbogy_faGPoRN9Hm7TqPSoGrCjH6-oHxtStG67jEOK47bDqF7jrh7jTjbk13DTb-yd6_yf6YZfN8BToZHF9mbIe2dlJoUVXvHJu2Xej_wH9vci-0</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Duer, Reuven</creator><creator>Lund, Russell</creator><creator>Tanaka, Richard</creator><creator>Christensen, Douglas A</creator><creator>Herron, James N</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20101101</creationdate><title>In-Plane Parallel Scanning: A Microarray Technology for Point-of-Care Testing</title><author>Duer, Reuven ; Lund, Russell ; Tanaka, Richard ; Christensen, Douglas A ; Herron, James N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-4b9b048f8eb231cd7716a09f112a9508879c8a0f03ebe5c24f982607030bcab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Bacteria</topic><topic>Bacterial Toxins - analysis</topic><topic>Chemistry</topic><topic>Clostridium difficile - isolation &amp; purification</topic><topic>Cytokines</topic><topic>Diagnostics</topic><topic>Enterocolitis, Pseudomembranous - diagnosis</topic><topic>Enterotoxins - analysis</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Global environmental pollution</topic><topic>Humans</topic><topic>Interleukin-1beta - analysis</topic><topic>Limit of Detection</topic><topic>Measurement</topic><topic>Microarray Analysis - instrumentation</topic><topic>Miscellaneous</topic><topic>Point-of-Care Systems</topic><topic>Pollution</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duer, Reuven</creatorcontrib><creatorcontrib>Lund, Russell</creatorcontrib><creatorcontrib>Tanaka, Richard</creatorcontrib><creatorcontrib>Christensen, Douglas A</creatorcontrib><creatorcontrib>Herron, James N</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duer, Reuven</au><au>Lund, Russell</au><au>Tanaka, Richard</au><au>Christensen, Douglas A</au><au>Herron, James N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Plane Parallel Scanning: A Microarray Technology for Point-of-Care Testing</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>82</volume><issue>21</issue><spage>8856</spage><epage>8865</epage><pages>8856-8865</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A new microarray technology is described for rapid, inexpensive, multiplex diagnostics assays. Referred to as “in-plane parallel scanning” (IPPS), this technology replaces expensive laser scanning with a grid of 100-μm-wide waveguides embedded in the chip’s substrate, enabling real-time quantification of molecular complex formation on the chip’s surface. Compared to conventional microarray technology, IPPS has advantages of shorter assay time and lower instrument cost and complexity so that the platform can potentially be used in point-of-care (POC) settings. Two different chip formats are described: a low-density microarray with 10 sensing wells (IPPS-10) and a medium-density one with 100 sensing wells (IPPS-100). Performance was evaluated in two different proof-of-principle immunoassays: interleukin-1β (IL-1β) and Clostridium difficile toxin A. The two assays gave similar limits of detection of 0.67 and 0.94 pM, respectively. A saturation kinetics model described the sensor response with apparent dissociation constants of 511 pM for IL-1β and 6.47 nM for C. difficile toxin A toxoid. The multiplexing capabilities of the IPPS technology were also demonstrated in a multiplex assay for both analytes on the same IPPS-10 chip. Based on these results, the IPPS technology holds promise for translating diagnostic microarrays into near-patient environments.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20945920</pmid><doi>10.1021/ac101571b</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2010-11, Vol.82 (21), p.8856-8865
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1448218722
source ACS Publications; MEDLINE
subjects Analytical chemistry
Applied sciences
Bacteria
Bacterial Toxins - analysis
Chemistry
Clostridium difficile - isolation & purification
Cytokines
Diagnostics
Enterocolitis, Pseudomembranous - diagnosis
Enterotoxins - analysis
Equipment Design
Exact sciences and technology
General, instrumentation
Global environmental pollution
Humans
Interleukin-1beta - analysis
Limit of Detection
Measurement
Microarray Analysis - instrumentation
Miscellaneous
Point-of-Care Systems
Pollution
Reaction kinetics
title In-Plane Parallel Scanning: A Microarray Technology for Point-of-Care Testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Plane%20Parallel%20Scanning:%20A%20Microarray%20Technology%20for%20Point-of-Care%20Testing&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Duer,%20Reuven&rft.date=2010-11-01&rft.volume=82&rft.issue=21&rft.spage=8856&rft.epage=8865&rft.pages=8856-8865&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac101571b&rft_dat=%3Cproquest_cross%3E1448218722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=814804621&rft_id=info:pmid/20945920&rfr_iscdi=true