In-Plane Parallel Scanning: A Microarray Technology for Point-of-Care Testing

A new microarray technology is described for rapid, inexpensive, multiplex diagnostics assays. Referred to as “in-plane parallel scanning” (IPPS), this technology replaces expensive laser scanning with a grid of 100-μm-wide waveguides embedded in the chip’s substrate, enabling real-time quantificati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2010-11, Vol.82 (21), p.8856-8865
Hauptverfasser: Duer, Reuven, Lund, Russell, Tanaka, Richard, Christensen, Douglas A, Herron, James N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new microarray technology is described for rapid, inexpensive, multiplex diagnostics assays. Referred to as “in-plane parallel scanning” (IPPS), this technology replaces expensive laser scanning with a grid of 100-μm-wide waveguides embedded in the chip’s substrate, enabling real-time quantification of molecular complex formation on the chip’s surface. Compared to conventional microarray technology, IPPS has advantages of shorter assay time and lower instrument cost and complexity so that the platform can potentially be used in point-of-care (POC) settings. Two different chip formats are described: a low-density microarray with 10 sensing wells (IPPS-10) and a medium-density one with 100 sensing wells (IPPS-100). Performance was evaluated in two different proof-of-principle immunoassays: interleukin-1β (IL-1β) and Clostridium difficile toxin A. The two assays gave similar limits of detection of 0.67 and 0.94 pM, respectively. A saturation kinetics model described the sensor response with apparent dissociation constants of 511 pM for IL-1β and 6.47 nM for C. difficile toxin A toxoid. The multiplexing capabilities of the IPPS technology were also demonstrated in a multiplex assay for both analytes on the same IPPS-10 chip. Based on these results, the IPPS technology holds promise for translating diagnostic microarrays into near-patient environments.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac101571b